High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications
In the first part of this paper, the status of the 140-GHz continuously operated gyrotrons with an output power of 1 MW for the stellarator Wendelstein 7-X will be described. With the first series tube, an output power of 1000 kW has been achieved in short pulse operation (milliseconds) with an elec...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2006-04, Vol.34 (2), p.173-186 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 2 |
container_start_page | 173 |
container_title | IEEE transactions on plasma science |
container_volume | 34 |
creator | Dammertz, G. Alberti, S. Arnold, A. Bariou, D. Brand, P. Braune, H. Erckmann, V. Dumbrajs, O. Gantenbein, G. Giguet, E. Heidinger, R. Hogge, J.-P. Illy, S. Jin, J. Kasparek, W. Koppenburg, K. Laqua, H.P. Legrand, F. Leonhardt, W. Lievin, C. Michel, G. Neffe, G. Piosczyk, B. Prinz, O. Rzesnicki, T. Schmid, M. Thumm, M. Minh Quang Tran Yang, X. Yovchev, I. |
description | In the first part of this paper, the status of the 140-GHz continuously operated gyrotrons with an output power of 1 MW for the stellarator Wendelstein 7-X will be described. With the first series tube, an output power of 1000 kW has been achieved in short pulse operation (milliseconds) with an electron beam current of 40 A, and of 1150 kW at 50 A. With a pulse length of 3 min limited by the available high-voltage (HV) power supply, an output power of 920 kW at an electron beam current of about 40 A with an efficiency of 45% and a mode purity of 97.5% has been obtained. At a reduced beam current of 29 A, an output power of 570 kW was measured with a pulse length of 1893 s without significant increase in tube pressure. The energy content of this pulse is almost 1.1 GJ. For the next fusion plasma device, International Thermonuclear Experimental Reactor (ITER), gyrotrons with a higher output power of about 2 MW are desirable. In short-pulse experiments, the feasibility of the fabrication of coaxial cavity gyrotrons with an output power up to 2-MW, continuous wave (CW), has been demonstrated, and the information necessary for a technical design has been obtained. The development of a long-pulse 2-MW coaxial cavity gyrotron started within a European cooperation. In parallel to the design and fabrication of an industrial prototype gyrotron, a short-pulse preprototype gyrotron has been operated to verify the design of critical components. An output power of 1.2 MW with an efficiency of 20% has been achieved. The development of frequency tunable gyrotrons operating in the range from 105 to 140 GHz for stabilization of current driven plasma instabilities in fusion plasma devices (neoclassical tearing modes) is another task in the development of gyrotrons at the Forschungszentrum Karlsruhe. |
doi_str_mv | 10.1109/TPS.2006.872176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2006_872176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1621285</ieee_id><sourcerecordid>28014704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-bfc3f6a6a1ffe361bd7f689a4672b508316a86f33bd215e2b6dd5262a87e63293</originalsourceid><addsrcrecordid>eNp9kcFLwzAUxoMoOKdnD16KoJ66JXlrkh5lOCcOFJxeQ9omW0fX1KRV5l9vxgYDD57e473f98F7H0KXBA8Iwelw_vo2oBizgeCUcHaEeiSFNE6BJ8eoh3EKMQgCp-jM-xXGZJRg2kMf03KxjBv7rV202DjbOltHhf7SlW3Wum4j1UYT63y-7OqF_wkT162jZ-Uq77qljox1kel8GVSqaaoyV23o_Tk6Mary-mJf--h98jAfT-PZy-PT-H4W5yPK2zgzORimmCLGaGAkK7hhIlUjxmmWYAGEKcEMQFZQkmiasaJIKKNKcM2AptBHdzvfxtnPTvtWrkuf66pStbadl0KEHwRjEsjbf0kqwks4HgXw-g-4sp2rwxWSpAnhAIIGaLiDcme9d9rIxpVr5TaSYLmNQ4Y45DYOuYsjKG72tsrnqjJO1XnpDzLOKWAQgbvacaXW-rBmlFCRwC-jkpO_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195173382</pqid></control><display><type>article</type><title>High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications</title><source>IEEE Electronic Library (IEL)</source><creator>Dammertz, G. ; Alberti, S. ; Arnold, A. ; Bariou, D. ; Brand, P. ; Braune, H. ; Erckmann, V. ; Dumbrajs, O. ; Gantenbein, G. ; Giguet, E. ; Heidinger, R. ; Hogge, J.-P. ; Illy, S. ; Jin, J. ; Kasparek, W. ; Koppenburg, K. ; Laqua, H.P. ; Legrand, F. ; Leonhardt, W. ; Lievin, C. ; Michel, G. ; Neffe, G. ; Piosczyk, B. ; Prinz, O. ; Rzesnicki, T. ; Schmid, M. ; Thumm, M. ; Minh Quang Tran ; Yang, X. ; Yovchev, I.</creator><creatorcontrib>Dammertz, G. ; Alberti, S. ; Arnold, A. ; Bariou, D. ; Brand, P. ; Braune, H. ; Erckmann, V. ; Dumbrajs, O. ; Gantenbein, G. ; Giguet, E. ; Heidinger, R. ; Hogge, J.-P. ; Illy, S. ; Jin, J. ; Kasparek, W. ; Koppenburg, K. ; Laqua, H.P. ; Legrand, F. ; Leonhardt, W. ; Lievin, C. ; Michel, G. ; Neffe, G. ; Piosczyk, B. ; Prinz, O. ; Rzesnicki, T. ; Schmid, M. ; Thumm, M. ; Minh Quang Tran ; Yang, X. ; Yovchev, I.</creatorcontrib><description>In the first part of this paper, the status of the 140-GHz continuously operated gyrotrons with an output power of 1 MW for the stellarator Wendelstein 7-X will be described. With the first series tube, an output power of 1000 kW has been achieved in short pulse operation (milliseconds) with an electron beam current of 40 A, and of 1150 kW at 50 A. With a pulse length of 3 min limited by the available high-voltage (HV) power supply, an output power of 920 kW at an electron beam current of about 40 A with an efficiency of 45% and a mode purity of 97.5% has been obtained. At a reduced beam current of 29 A, an output power of 570 kW was measured with a pulse length of 1893 s without significant increase in tube pressure. The energy content of this pulse is almost 1.1 GJ. For the next fusion plasma device, International Thermonuclear Experimental Reactor (ITER), gyrotrons with a higher output power of about 2 MW are desirable. In short-pulse experiments, the feasibility of the fabrication of coaxial cavity gyrotrons with an output power up to 2-MW, continuous wave (CW), has been demonstrated, and the information necessary for a technical design has been obtained. The development of a long-pulse 2-MW coaxial cavity gyrotron started within a European cooperation. In parallel to the design and fabrication of an industrial prototype gyrotron, a short-pulse preprototype gyrotron has been operated to verify the design of critical components. An output power of 1.2 MW with an efficiency of 20% has been achieved. The development of frequency tunable gyrotrons operating in the range from 105 to 140 GHz for stabilization of current driven plasma instabilities in fusion plasma devices (neoclassical tearing modes) is another task in the development of gyrotrons at the Forschungszentrum Karlsruhe.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2006.872176</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coaxial components ; Coaxial gyrotron ; Devices ; diamond window ; Electricity generation ; Electron beams ; Electron tubes ; Electronic tubes, masers ; Electronics ; Electrons ; Exact sciences and technology ; Fabrication ; frequency tuning ; Fusion ; gyrotron ; Gyrotrons ; high-power microwaves ; Holes ; Instability ; Magnetic confinement and equilibrium ; Particle beam measurements ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma devices ; Plasma heating (beam injection, radio-frequency and microwave, ohmic, icr, ecr and current drive heating) ; Plasma production and heating ; Power generation ; Pulse measurements ; Pulsed power supplies ; quasi-optical mode converter ; Short pulses ; single-stage depressed collector ; Stabilization ; Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices ; step tunability ; stray radiation ; Tokamaks ; Tubes</subject><ispartof>IEEE transactions on plasma science, 2006-04, Vol.34 (2), p.173-186</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-bfc3f6a6a1ffe361bd7f689a4672b508316a86f33bd215e2b6dd5262a87e63293</citedby><cites>FETCH-LOGICAL-c427t-bfc3f6a6a1ffe361bd7f689a4672b508316a86f33bd215e2b6dd5262a87e63293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1621285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1621285$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17723038$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dammertz, G.</creatorcontrib><creatorcontrib>Alberti, S.</creatorcontrib><creatorcontrib>Arnold, A.</creatorcontrib><creatorcontrib>Bariou, D.</creatorcontrib><creatorcontrib>Brand, P.</creatorcontrib><creatorcontrib>Braune, H.</creatorcontrib><creatorcontrib>Erckmann, V.</creatorcontrib><creatorcontrib>Dumbrajs, O.</creatorcontrib><creatorcontrib>Gantenbein, G.</creatorcontrib><creatorcontrib>Giguet, E.</creatorcontrib><creatorcontrib>Heidinger, R.</creatorcontrib><creatorcontrib>Hogge, J.-P.</creatorcontrib><creatorcontrib>Illy, S.</creatorcontrib><creatorcontrib>Jin, J.</creatorcontrib><creatorcontrib>Kasparek, W.</creatorcontrib><creatorcontrib>Koppenburg, K.</creatorcontrib><creatorcontrib>Laqua, H.P.</creatorcontrib><creatorcontrib>Legrand, F.</creatorcontrib><creatorcontrib>Leonhardt, W.</creatorcontrib><creatorcontrib>Lievin, C.</creatorcontrib><creatorcontrib>Michel, G.</creatorcontrib><creatorcontrib>Neffe, G.</creatorcontrib><creatorcontrib>Piosczyk, B.</creatorcontrib><creatorcontrib>Prinz, O.</creatorcontrib><creatorcontrib>Rzesnicki, T.</creatorcontrib><creatorcontrib>Schmid, M.</creatorcontrib><creatorcontrib>Thumm, M.</creatorcontrib><creatorcontrib>Minh Quang Tran</creatorcontrib><creatorcontrib>Yang, X.</creatorcontrib><creatorcontrib>Yovchev, I.</creatorcontrib><title>High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>In the first part of this paper, the status of the 140-GHz continuously operated gyrotrons with an output power of 1 MW for the stellarator Wendelstein 7-X will be described. With the first series tube, an output power of 1000 kW has been achieved in short pulse operation (milliseconds) with an electron beam current of 40 A, and of 1150 kW at 50 A. With a pulse length of 3 min limited by the available high-voltage (HV) power supply, an output power of 920 kW at an electron beam current of about 40 A with an efficiency of 45% and a mode purity of 97.5% has been obtained. At a reduced beam current of 29 A, an output power of 570 kW was measured with a pulse length of 1893 s without significant increase in tube pressure. The energy content of this pulse is almost 1.1 GJ. For the next fusion plasma device, International Thermonuclear Experimental Reactor (ITER), gyrotrons with a higher output power of about 2 MW are desirable. In short-pulse experiments, the feasibility of the fabrication of coaxial cavity gyrotrons with an output power up to 2-MW, continuous wave (CW), has been demonstrated, and the information necessary for a technical design has been obtained. The development of a long-pulse 2-MW coaxial cavity gyrotron started within a European cooperation. In parallel to the design and fabrication of an industrial prototype gyrotron, a short-pulse preprototype gyrotron has been operated to verify the design of critical components. An output power of 1.2 MW with an efficiency of 20% has been achieved. The development of frequency tunable gyrotrons operating in the range from 105 to 140 GHz for stabilization of current driven plasma instabilities in fusion plasma devices (neoclassical tearing modes) is another task in the development of gyrotrons at the Forschungszentrum Karlsruhe.</description><subject>Applied sciences</subject><subject>Coaxial components</subject><subject>Coaxial gyrotron</subject><subject>Devices</subject><subject>diamond window</subject><subject>Electricity generation</subject><subject>Electron beams</subject><subject>Electron tubes</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>frequency tuning</subject><subject>Fusion</subject><subject>gyrotron</subject><subject>Gyrotrons</subject><subject>high-power microwaves</subject><subject>Holes</subject><subject>Instability</subject><subject>Magnetic confinement and equilibrium</subject><subject>Particle beam measurements</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma devices</subject><subject>Plasma heating (beam injection, radio-frequency and microwave, ohmic, icr, ecr and current drive heating)</subject><subject>Plasma production and heating</subject><subject>Power generation</subject><subject>Pulse measurements</subject><subject>Pulsed power supplies</subject><subject>quasi-optical mode converter</subject><subject>Short pulses</subject><subject>single-stage depressed collector</subject><subject>Stabilization</subject><subject>Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices</subject><subject>step tunability</subject><subject>stray radiation</subject><subject>Tokamaks</subject><subject>Tubes</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kcFLwzAUxoMoOKdnD16KoJ66JXlrkh5lOCcOFJxeQ9omW0fX1KRV5l9vxgYDD57e473f98F7H0KXBA8Iwelw_vo2oBizgeCUcHaEeiSFNE6BJ8eoh3EKMQgCp-jM-xXGZJRg2kMf03KxjBv7rV202DjbOltHhf7SlW3Wum4j1UYT63y-7OqF_wkT162jZ-Uq77qljox1kel8GVSqaaoyV23o_Tk6Mary-mJf--h98jAfT-PZy-PT-H4W5yPK2zgzORimmCLGaGAkK7hhIlUjxmmWYAGEKcEMQFZQkmiasaJIKKNKcM2AptBHdzvfxtnPTvtWrkuf66pStbadl0KEHwRjEsjbf0kqwks4HgXw-g-4sp2rwxWSpAnhAIIGaLiDcme9d9rIxpVr5TaSYLmNQ4Y45DYOuYsjKG72tsrnqjJO1XnpDzLOKWAQgbvacaXW-rBmlFCRwC-jkpO_</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Dammertz, G.</creator><creator>Alberti, S.</creator><creator>Arnold, A.</creator><creator>Bariou, D.</creator><creator>Brand, P.</creator><creator>Braune, H.</creator><creator>Erckmann, V.</creator><creator>Dumbrajs, O.</creator><creator>Gantenbein, G.</creator><creator>Giguet, E.</creator><creator>Heidinger, R.</creator><creator>Hogge, J.-P.</creator><creator>Illy, S.</creator><creator>Jin, J.</creator><creator>Kasparek, W.</creator><creator>Koppenburg, K.</creator><creator>Laqua, H.P.</creator><creator>Legrand, F.</creator><creator>Leonhardt, W.</creator><creator>Lievin, C.</creator><creator>Michel, G.</creator><creator>Neffe, G.</creator><creator>Piosczyk, B.</creator><creator>Prinz, O.</creator><creator>Rzesnicki, T.</creator><creator>Schmid, M.</creator><creator>Thumm, M.</creator><creator>Minh Quang Tran</creator><creator>Yang, X.</creator><creator>Yovchev, I.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060401</creationdate><title>High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications</title><author>Dammertz, G. ; Alberti, S. ; Arnold, A. ; Bariou, D. ; Brand, P. ; Braune, H. ; Erckmann, V. ; Dumbrajs, O. ; Gantenbein, G. ; Giguet, E. ; Heidinger, R. ; Hogge, J.-P. ; Illy, S. ; Jin, J. ; Kasparek, W. ; Koppenburg, K. ; Laqua, H.P. ; Legrand, F. ; Leonhardt, W. ; Lievin, C. ; Michel, G. ; Neffe, G. ; Piosczyk, B. ; Prinz, O. ; Rzesnicki, T. ; Schmid, M. ; Thumm, M. ; Minh Quang Tran ; Yang, X. ; Yovchev, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-bfc3f6a6a1ffe361bd7f689a4672b508316a86f33bd215e2b6dd5262a87e63293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Coaxial components</topic><topic>Coaxial gyrotron</topic><topic>Devices</topic><topic>diamond window</topic><topic>Electricity generation</topic><topic>Electron beams</topic><topic>Electron tubes</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>frequency tuning</topic><topic>Fusion</topic><topic>gyrotron</topic><topic>Gyrotrons</topic><topic>high-power microwaves</topic><topic>Holes</topic><topic>Instability</topic><topic>Magnetic confinement and equilibrium</topic><topic>Particle beam measurements</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma devices</topic><topic>Plasma heating (beam injection, radio-frequency and microwave, ohmic, icr, ecr and current drive heating)</topic><topic>Plasma production and heating</topic><topic>Power generation</topic><topic>Pulse measurements</topic><topic>Pulsed power supplies</topic><topic>quasi-optical mode converter</topic><topic>Short pulses</topic><topic>single-stage depressed collector</topic><topic>Stabilization</topic><topic>Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices</topic><topic>step tunability</topic><topic>stray radiation</topic><topic>Tokamaks</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dammertz, G.</creatorcontrib><creatorcontrib>Alberti, S.</creatorcontrib><creatorcontrib>Arnold, A.</creatorcontrib><creatorcontrib>Bariou, D.</creatorcontrib><creatorcontrib>Brand, P.</creatorcontrib><creatorcontrib>Braune, H.</creatorcontrib><creatorcontrib>Erckmann, V.</creatorcontrib><creatorcontrib>Dumbrajs, O.</creatorcontrib><creatorcontrib>Gantenbein, G.</creatorcontrib><creatorcontrib>Giguet, E.</creatorcontrib><creatorcontrib>Heidinger, R.</creatorcontrib><creatorcontrib>Hogge, J.-P.</creatorcontrib><creatorcontrib>Illy, S.</creatorcontrib><creatorcontrib>Jin, J.</creatorcontrib><creatorcontrib>Kasparek, W.</creatorcontrib><creatorcontrib>Koppenburg, K.</creatorcontrib><creatorcontrib>Laqua, H.P.</creatorcontrib><creatorcontrib>Legrand, F.</creatorcontrib><creatorcontrib>Leonhardt, W.</creatorcontrib><creatorcontrib>Lievin, C.</creatorcontrib><creatorcontrib>Michel, G.</creatorcontrib><creatorcontrib>Neffe, G.</creatorcontrib><creatorcontrib>Piosczyk, B.</creatorcontrib><creatorcontrib>Prinz, O.</creatorcontrib><creatorcontrib>Rzesnicki, T.</creatorcontrib><creatorcontrib>Schmid, M.</creatorcontrib><creatorcontrib>Thumm, M.</creatorcontrib><creatorcontrib>Minh Quang Tran</creatorcontrib><creatorcontrib>Yang, X.</creatorcontrib><creatorcontrib>Yovchev, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dammertz, G.</au><au>Alberti, S.</au><au>Arnold, A.</au><au>Bariou, D.</au><au>Brand, P.</au><au>Braune, H.</au><au>Erckmann, V.</au><au>Dumbrajs, O.</au><au>Gantenbein, G.</au><au>Giguet, E.</au><au>Heidinger, R.</au><au>Hogge, J.-P.</au><au>Illy, S.</au><au>Jin, J.</au><au>Kasparek, W.</au><au>Koppenburg, K.</au><au>Laqua, H.P.</au><au>Legrand, F.</au><au>Leonhardt, W.</au><au>Lievin, C.</au><au>Michel, G.</au><au>Neffe, G.</au><au>Piosczyk, B.</au><au>Prinz, O.</au><au>Rzesnicki, T.</au><au>Schmid, M.</au><au>Thumm, M.</au><au>Minh Quang Tran</au><au>Yang, X.</au><au>Yovchev, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2006-04-01</date><risdate>2006</risdate><volume>34</volume><issue>2</issue><spage>173</spage><epage>186</epage><pages>173-186</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>In the first part of this paper, the status of the 140-GHz continuously operated gyrotrons with an output power of 1 MW for the stellarator Wendelstein 7-X will be described. With the first series tube, an output power of 1000 kW has been achieved in short pulse operation (milliseconds) with an electron beam current of 40 A, and of 1150 kW at 50 A. With a pulse length of 3 min limited by the available high-voltage (HV) power supply, an output power of 920 kW at an electron beam current of about 40 A with an efficiency of 45% and a mode purity of 97.5% has been obtained. At a reduced beam current of 29 A, an output power of 570 kW was measured with a pulse length of 1893 s without significant increase in tube pressure. The energy content of this pulse is almost 1.1 GJ. For the next fusion plasma device, International Thermonuclear Experimental Reactor (ITER), gyrotrons with a higher output power of about 2 MW are desirable. In short-pulse experiments, the feasibility of the fabrication of coaxial cavity gyrotrons with an output power up to 2-MW, continuous wave (CW), has been demonstrated, and the information necessary for a technical design has been obtained. The development of a long-pulse 2-MW coaxial cavity gyrotron started within a European cooperation. In parallel to the design and fabrication of an industrial prototype gyrotron, a short-pulse preprototype gyrotron has been operated to verify the design of critical components. An output power of 1.2 MW with an efficiency of 20% has been achieved. The development of frequency tunable gyrotrons operating in the range from 105 to 140 GHz for stabilization of current driven plasma instabilities in fusion plasma devices (neoclassical tearing modes) is another task in the development of gyrotrons at the Forschungszentrum Karlsruhe.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2006.872176</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2006-04, Vol.34 (2), p.173-186 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPS_2006_872176 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Coaxial components Coaxial gyrotron Devices diamond window Electricity generation Electron beams Electron tubes Electronic tubes, masers Electronics Electrons Exact sciences and technology Fabrication frequency tuning Fusion gyrotron Gyrotrons high-power microwaves Holes Instability Magnetic confinement and equilibrium Particle beam measurements Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasma devices Plasma heating (beam injection, radio-frequency and microwave, ohmic, icr, ecr and current drive heating) Plasma production and heating Power generation Pulse measurements Pulsed power supplies quasi-optical mode converter Short pulses single-stage depressed collector Stabilization Stellarators, torsatrons, heliacs, bumpy tori, and other toroidal confinement devices step tunability stray radiation Tokamaks Tubes |
title | High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-power%20gyrotron%20development%20at%20Forschungszentrum%20Karlsruhe%20for%20fusion%20applications&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Dammertz,%20G.&rft.date=2006-04-01&rft.volume=34&rft.issue=2&rft.spage=173&rft.epage=186&rft.pages=173-186&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2006.872176&rft_dat=%3Cproquest_RIE%3E28014704%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195173382&rft_id=info:pmid/&rft_ieee_id=1621285&rfr_iscdi=true |