Theory of high-power wide-band traveling-wave tube using coaxial inverted helical groove slow-wave structure

A novel slow-wave structure (SWS), the coaxial inverted helical groove structure, is presented and those of its properties used for wide-band traveling-wave tube (TWT) are investigated. The first part of the paper concerns the wave properties of this structure in the case of a vacuum. The influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2002-10, Vol.30 (5), p.2010-2018
Hauptverfasser: Yanyu Wei, Baofu Jia, Gun-Sik Park, Young-Do Joo, Guofen Yu, Wenxiang Wang, Shenggang Liu, Uhm, H.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2018
container_issue 5
container_start_page 2010
container_title IEEE transactions on plasma science
container_volume 30
creator Yanyu Wei
Baofu Jia
Gun-Sik Park
Young-Do Joo
Guofen Yu
Wenxiang Wang
Shenggang Liu
Uhm, H.S.
description A novel slow-wave structure (SWS), the coaxial inverted helical groove structure, is presented and those of its properties used for wide-band traveling-wave tube (TWT) are investigated. The first part of the paper concerns the wave properties of this structure in the case of a vacuum. The influence of the geometrical dimensions on dispersion characteristics and interaction impedance are investigated. The theoretical results reveal a very weak dispersion for the fundamental wave in the structure. The negative dispersion can be realized by a suitable selection of the structural parameters. The interaction impedance of the fundamental wave is about 10 /spl Omega/. The interaction impedance of the -1 space harmonic wave is much lower than that of the fundamental wave. Thus, the risk of backward wave oscillation is reduced. The software high frequency structure simulator (HFSS) is also used to calculate the dispersion property of the SWS. The simulation results from HFSS and the theoretical results agree well, which supports the theory. In the second part, a self-consistent linear theory of a coaxial inverted helical groove TWT is presented. The typical small signal gain per period is about 0.5 dB and the 3-dB small-signal gain bandwidth can exceed 25% with a 33-dB gain of tube.
doi_str_mv 10.1109/TPS.2002.807498
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPS_2002_807498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1178018</ieee_id><sourcerecordid>292177571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-b766a305663e65a1208f1abd1d946f079b3c2486cac60b2d20d8ca3fac753e4d3</originalsourceid><addsrcrecordid>eNqNkcFrFDEUxoNYcG09e_ASBPU02_eSTCY5SqlWKFhwPYdMJrObMp2syUzX_vfNMoVCD-Ipycvv--B9HyHvEdaIoM83N7_WDICtFTRCq1dkhZrrSvOmfk1WAJpXXCF_Q97mfAuAoga2IsNm52N6oLGnu7DdVft48IkeQuer1o4dnZK990MYt9WhXOg0t57Oubypi_ZvsAMN471Pk-_ornCuDLYpxoLmIR4WUZ7S7KY5-TNy0tsh-3dP5yn5_e1yc3FVXf_8_uPi63XlBMJUtY2UlkMtJfeytshA9WjbDjstZA-NbrljQklnnYSWdQw65SzvrWtq7kXHT8mXxXef4p_Z58nchez8MNjRxzkbXTxqITUv5Od_kkypkqLQ_wE2wBFEAT--AG_jnMayrkFdYwOSHd3OF8ilmHPyvdmncGfTg0EwxzZNadMc2zRLm0Xx6cnW5hJyn-zoQn6WiZoDcizch4UL3vvnb2wUoOKP-Xyoig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195170629</pqid></control><display><type>article</type><title>Theory of high-power wide-band traveling-wave tube using coaxial inverted helical groove slow-wave structure</title><source>IEEE Electronic Library (IEL)</source><creator>Yanyu Wei ; Baofu Jia ; Gun-Sik Park ; Young-Do Joo ; Guofen Yu ; Wenxiang Wang ; Shenggang Liu ; Uhm, H.S.</creator><creatorcontrib>Yanyu Wei ; Baofu Jia ; Gun-Sik Park ; Young-Do Joo ; Guofen Yu ; Wenxiang Wang ; Shenggang Liu ; Uhm, H.S.</creatorcontrib><description>A novel slow-wave structure (SWS), the coaxial inverted helical groove structure, is presented and those of its properties used for wide-band traveling-wave tube (TWT) are investigated. The first part of the paper concerns the wave properties of this structure in the case of a vacuum. The influence of the geometrical dimensions on dispersion characteristics and interaction impedance are investigated. The theoretical results reveal a very weak dispersion for the fundamental wave in the structure. The negative dispersion can be realized by a suitable selection of the structural parameters. The interaction impedance of the fundamental wave is about 10 /spl Omega/. The interaction impedance of the -1 space harmonic wave is much lower than that of the fundamental wave. Thus, the risk of backward wave oscillation is reduced. The software high frequency structure simulator (HFSS) is also used to calculate the dispersion property of the SWS. The simulation results from HFSS and the theoretical results agree well, which supports the theory. In the second part, a self-consistent linear theory of a coaxial inverted helical groove TWT is presented. The typical small signal gain per period is about 0.5 dB and the 3-dB small-signal gain bandwidth can exceed 25% with a 33-dB gain of tube.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2002.807498</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bandwidth ; Coaxial components ; Coupling circuits ; Dispersions ; Electronic tubes, masers ; Electronics ; Exact sciences and technology ; Frequency ; Gain ; Grooves ; Helical ; Impedance ; Laboratories ; Microwave tubes (eg, klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.) ; Microwaves ; Noise levels ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma interactions (nonlaser) ; Plasma interactions with antennas; plasma-filled waveguides ; Signal analysis ; Simulation ; Structural engineering ; Theory ; Traveling wave tubes ; Wideband</subject><ispartof>IEEE transactions on plasma science, 2002-10, Vol.30 (5), p.2010-2018</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-b766a305663e65a1208f1abd1d946f079b3c2486cac60b2d20d8ca3fac753e4d3</citedby><cites>FETCH-LOGICAL-c410t-b766a305663e65a1208f1abd1d946f079b3c2486cac60b2d20d8ca3fac753e4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1178018$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1178018$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14530131$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yanyu Wei</creatorcontrib><creatorcontrib>Baofu Jia</creatorcontrib><creatorcontrib>Gun-Sik Park</creatorcontrib><creatorcontrib>Young-Do Joo</creatorcontrib><creatorcontrib>Guofen Yu</creatorcontrib><creatorcontrib>Wenxiang Wang</creatorcontrib><creatorcontrib>Shenggang Liu</creatorcontrib><creatorcontrib>Uhm, H.S.</creatorcontrib><title>Theory of high-power wide-band traveling-wave tube using coaxial inverted helical groove slow-wave structure</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>A novel slow-wave structure (SWS), the coaxial inverted helical groove structure, is presented and those of its properties used for wide-band traveling-wave tube (TWT) are investigated. The first part of the paper concerns the wave properties of this structure in the case of a vacuum. The influence of the geometrical dimensions on dispersion characteristics and interaction impedance are investigated. The theoretical results reveal a very weak dispersion for the fundamental wave in the structure. The negative dispersion can be realized by a suitable selection of the structural parameters. The interaction impedance of the fundamental wave is about 10 /spl Omega/. The interaction impedance of the -1 space harmonic wave is much lower than that of the fundamental wave. Thus, the risk of backward wave oscillation is reduced. The software high frequency structure simulator (HFSS) is also used to calculate the dispersion property of the SWS. The simulation results from HFSS and the theoretical results agree well, which supports the theory. In the second part, a self-consistent linear theory of a coaxial inverted helical groove TWT is presented. The typical small signal gain per period is about 0.5 dB and the 3-dB small-signal gain bandwidth can exceed 25% with a 33-dB gain of tube.</description><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Coaxial components</subject><subject>Coupling circuits</subject><subject>Dispersions</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Gain</subject><subject>Grooves</subject><subject>Helical</subject><subject>Impedance</subject><subject>Laboratories</subject><subject>Microwave tubes (eg, klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.)</subject><subject>Microwaves</subject><subject>Noise levels</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma interactions (nonlaser)</subject><subject>Plasma interactions with antennas; plasma-filled waveguides</subject><subject>Signal analysis</subject><subject>Simulation</subject><subject>Structural engineering</subject><subject>Theory</subject><subject>Traveling wave tubes</subject><subject>Wideband</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkcFrFDEUxoNYcG09e_ASBPU02_eSTCY5SqlWKFhwPYdMJrObMp2syUzX_vfNMoVCD-Ipycvv--B9HyHvEdaIoM83N7_WDICtFTRCq1dkhZrrSvOmfk1WAJpXXCF_Q97mfAuAoga2IsNm52N6oLGnu7DdVft48IkeQuer1o4dnZK990MYt9WhXOg0t57Oubypi_ZvsAMN471Pk-_ornCuDLYpxoLmIR4WUZ7S7KY5-TNy0tsh-3dP5yn5_e1yc3FVXf_8_uPi63XlBMJUtY2UlkMtJfeytshA9WjbDjstZA-NbrljQklnnYSWdQw65SzvrWtq7kXHT8mXxXef4p_Z58nchez8MNjRxzkbXTxqITUv5Od_kkypkqLQ_wE2wBFEAT--AG_jnMayrkFdYwOSHd3OF8ilmHPyvdmncGfTg0EwxzZNadMc2zRLm0Xx6cnW5hJyn-zoQn6WiZoDcizch4UL3vvnb2wUoOKP-Xyoig</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Yanyu Wei</creator><creator>Baofu Jia</creator><creator>Gun-Sik Park</creator><creator>Young-Do Joo</creator><creator>Guofen Yu</creator><creator>Wenxiang Wang</creator><creator>Shenggang Liu</creator><creator>Uhm, H.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021001</creationdate><title>Theory of high-power wide-band traveling-wave tube using coaxial inverted helical groove slow-wave structure</title><author>Yanyu Wei ; Baofu Jia ; Gun-Sik Park ; Young-Do Joo ; Guofen Yu ; Wenxiang Wang ; Shenggang Liu ; Uhm, H.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-b766a305663e65a1208f1abd1d946f079b3c2486cac60b2d20d8ca3fac753e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Coaxial components</topic><topic>Coupling circuits</topic><topic>Dispersions</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Gain</topic><topic>Grooves</topic><topic>Helical</topic><topic>Impedance</topic><topic>Laboratories</topic><topic>Microwave tubes (eg, klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.)</topic><topic>Microwaves</topic><topic>Noise levels</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma interactions (nonlaser)</topic><topic>Plasma interactions with antennas; plasma-filled waveguides</topic><topic>Signal analysis</topic><topic>Simulation</topic><topic>Structural engineering</topic><topic>Theory</topic><topic>Traveling wave tubes</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanyu Wei</creatorcontrib><creatorcontrib>Baofu Jia</creatorcontrib><creatorcontrib>Gun-Sik Park</creatorcontrib><creatorcontrib>Young-Do Joo</creatorcontrib><creatorcontrib>Guofen Yu</creatorcontrib><creatorcontrib>Wenxiang Wang</creatorcontrib><creatorcontrib>Shenggang Liu</creatorcontrib><creatorcontrib>Uhm, H.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yanyu Wei</au><au>Baofu Jia</au><au>Gun-Sik Park</au><au>Young-Do Joo</au><au>Guofen Yu</au><au>Wenxiang Wang</au><au>Shenggang Liu</au><au>Uhm, H.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of high-power wide-band traveling-wave tube using coaxial inverted helical groove slow-wave structure</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2002-10-01</date><risdate>2002</risdate><volume>30</volume><issue>5</issue><spage>2010</spage><epage>2018</epage><pages>2010-2018</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>A novel slow-wave structure (SWS), the coaxial inverted helical groove structure, is presented and those of its properties used for wide-band traveling-wave tube (TWT) are investigated. The first part of the paper concerns the wave properties of this structure in the case of a vacuum. The influence of the geometrical dimensions on dispersion characteristics and interaction impedance are investigated. The theoretical results reveal a very weak dispersion for the fundamental wave in the structure. The negative dispersion can be realized by a suitable selection of the structural parameters. The interaction impedance of the fundamental wave is about 10 /spl Omega/. The interaction impedance of the -1 space harmonic wave is much lower than that of the fundamental wave. Thus, the risk of backward wave oscillation is reduced. The software high frequency structure simulator (HFSS) is also used to calculate the dispersion property of the SWS. The simulation results from HFSS and the theoretical results agree well, which supports the theory. In the second part, a self-consistent linear theory of a coaxial inverted helical groove TWT is presented. The typical small signal gain per period is about 0.5 dB and the 3-dB small-signal gain bandwidth can exceed 25% with a 33-dB gain of tube.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2002.807498</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2002-10, Vol.30 (5), p.2010-2018
issn 0093-3813
1939-9375
language eng
recordid cdi_crossref_primary_10_1109_TPS_2002_807498
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bandwidth
Coaxial components
Coupling circuits
Dispersions
Electronic tubes, masers
Electronics
Exact sciences and technology
Frequency
Gain
Grooves
Helical
Impedance
Laboratories
Microwave tubes (eg, klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.)
Microwaves
Noise levels
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma interactions (nonlaser)
Plasma interactions with antennas
plasma-filled waveguides
Signal analysis
Simulation
Structural engineering
Theory
Traveling wave tubes
Wideband
title Theory of high-power wide-band traveling-wave tube using coaxial inverted helical groove slow-wave structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20high-power%20wide-band%20traveling-wave%20tube%20using%20coaxial%20inverted%20helical%20groove%20slow-wave%20structure&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Yanyu%20Wei&rft.date=2002-10-01&rft.volume=30&rft.issue=5&rft.spage=2010&rft.epage=2018&rft.pages=2010-2018&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2002.807498&rft_dat=%3Cproquest_RIE%3E292177571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195170629&rft_id=info:pmid/&rft_ieee_id=1178018&rfr_iscdi=true