Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler

This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2024-06, Vol.39 (6), p.1-14
Hauptverfasser: Li, Zhenjie, Li, Xianzhen, Zhou, Yuxuan, Liu, Yiqi, Ban, Mingfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 6
container_start_page 1
container_title IEEE transactions on power electronics
container_volume 39
creator Li, Zhenjie
Li, Xianzhen
Zhou, Yuxuan
Liu, Yiqi
Ban, Mingfei
description This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's rationality is verified by analyzing the misalignment performance of the asymmetric circular coupler (ACC) with some auxiliary coils. Furthermore, a comprehensive elucidation is given, outlining the MCC's principle and structure from the magnetic field distribution and mutual inductance model. Second, combining the orthogonal experiments, Ansys Maxwell simulations, and data post-processing method, which feature a low workload and high efficiency, optimize the MCC's parameters. The design flow, misalignment performance, and parameter sensitivity analysis for the MCC are illustrated. Third, a series-series compensated WCS with a maximum system efficiency of 92.2% is constructed to demonstrate the proposed method. The experimental results show that the MCC maintains a relatively stable mutual inductance fluctuation of ±5% within a circular region whose radius is 135 mm (34% of the transmitter width). Besides, the charging current varies less than 5% within this circular region when the load resistance changes from 5 Ω to 25 Ω.
doi_str_mv 10.1109/TPEL.2024.3371208
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2024_3371208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10452867</ieee_id><sourcerecordid>3041506603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-68ffd54ddd8236c34e8cbd05a09abd0274d26a910704849372b9beff57b62b523</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HXnyUfT9FLK1MFEwQ3vDGmbbhn9mEkr7N-bul149XLgec7hvAjdEpgRAunD6n2-nFGgfMZYQijIMzQhKScREEjO0QSkjCOZpuwSXXm_AyA8BjJBX4tm77of227wq_W6tpu2MW2PV11tnG4Lg6vO4X5r8Kd1pjbe42yr3WYUPg6-Nw1e-z97qHu7rw3OOlsHqBvC4K7RRaVrb25OOUXrp_kqe4mWb8-L7HEZFZSLPhKyqsqYl2UpKRMF40YWeQmxhlSHpAkvqdBpeAW45ClLaJ7mpqriJBc0jymbovvj3vDM92B8r3bd4NpwUjHgJAYhgAWKHKnCdd47U6m9s412B0VAjTWqsUY11qhONQbn7uhYY8w_nsdUioT9AvFObwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041506603</pqid></control><display><type>article</type><title>Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zhenjie ; Li, Xianzhen ; Zhou, Yuxuan ; Liu, Yiqi ; Ban, Mingfei</creator><creatorcontrib>Li, Zhenjie ; Li, Xianzhen ; Zhou, Yuxuan ; Liu, Yiqi ; Ban, Mingfei</creatorcontrib><description>This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's rationality is verified by analyzing the misalignment performance of the asymmetric circular coupler (ACC) with some auxiliary coils. Furthermore, a comprehensive elucidation is given, outlining the MCC's principle and structure from the magnetic field distribution and mutual inductance model. Second, combining the orthogonal experiments, Ansys Maxwell simulations, and data post-processing method, which feature a low workload and high efficiency, optimize the MCC's parameters. The design flow, misalignment performance, and parameter sensitivity analysis for the MCC are illustrated. Third, a series-series compensated WCS with a maximum system efficiency of 92.2% is constructed to demonstrate the proposed method. The experimental results show that the MCC maintains a relatively stable mutual inductance fluctuation of ±5% within a circular region whose radius is 135 mm (34% of the transmitter width). Besides, the charging current varies less than 5% within this circular region when the load resistance changes from 5 Ω to 25 Ω.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3371208</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Couplers ; Design optimization ; Design parameters ; High anti-misalignment ability ; Inductance ; lightweight receiver ; Load resistance ; Magnetic cores ; Misalignment ; multiple coil coupler (MCC) ; Optical wavelength conversion ; orthogonal experiments ; Parameter sensitivity ; Receivers ; Sensitivity analysis ; Topology ; wireless power transfer (WPT) ; Wireless power transmission</subject><ispartof>IEEE transactions on power electronics, 2024-06, Vol.39 (6), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-68ffd54ddd8236c34e8cbd05a09abd0274d26a910704849372b9beff57b62b523</cites><orcidid>0000-0003-1205-7832 ; 0009-0006-9179-8047 ; 0000-0003-0702-8295 ; 0009-0009-7031-3313 ; 0000-0003-0605-7801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10452867$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10452867$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Zhenjie</creatorcontrib><creatorcontrib>Li, Xianzhen</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Liu, Yiqi</creatorcontrib><creatorcontrib>Ban, Mingfei</creatorcontrib><title>Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's rationality is verified by analyzing the misalignment performance of the asymmetric circular coupler (ACC) with some auxiliary coils. Furthermore, a comprehensive elucidation is given, outlining the MCC's principle and structure from the magnetic field distribution and mutual inductance model. Second, combining the orthogonal experiments, Ansys Maxwell simulations, and data post-processing method, which feature a low workload and high efficiency, optimize the MCC's parameters. The design flow, misalignment performance, and parameter sensitivity analysis for the MCC are illustrated. Third, a series-series compensated WCS with a maximum system efficiency of 92.2% is constructed to demonstrate the proposed method. The experimental results show that the MCC maintains a relatively stable mutual inductance fluctuation of ±5% within a circular region whose radius is 135 mm (34% of the transmitter width). Besides, the charging current varies less than 5% within this circular region when the load resistance changes from 5 Ω to 25 Ω.</description><subject>Coils</subject><subject>Couplers</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>High anti-misalignment ability</subject><subject>Inductance</subject><subject>lightweight receiver</subject><subject>Load resistance</subject><subject>Magnetic cores</subject><subject>Misalignment</subject><subject>multiple coil coupler (MCC)</subject><subject>Optical wavelength conversion</subject><subject>orthogonal experiments</subject><subject>Parameter sensitivity</subject><subject>Receivers</subject><subject>Sensitivity analysis</subject><subject>Topology</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HXnyUfT9FLK1MFEwQ3vDGmbbhn9mEkr7N-bul149XLgec7hvAjdEpgRAunD6n2-nFGgfMZYQijIMzQhKScREEjO0QSkjCOZpuwSXXm_AyA8BjJBX4tm77of227wq_W6tpu2MW2PV11tnG4Lg6vO4X5r8Kd1pjbe42yr3WYUPg6-Nw1e-z97qHu7rw3OOlsHqBvC4K7RRaVrb25OOUXrp_kqe4mWb8-L7HEZFZSLPhKyqsqYl2UpKRMF40YWeQmxhlSHpAkvqdBpeAW45ClLaJ7mpqriJBc0jymbovvj3vDM92B8r3bd4NpwUjHgJAYhgAWKHKnCdd47U6m9s412B0VAjTWqsUY11qhONQbn7uhYY8w_nsdUioT9AvFObwY</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Li, Zhenjie</creator><creator>Li, Xianzhen</creator><creator>Zhou, Yuxuan</creator><creator>Liu, Yiqi</creator><creator>Ban, Mingfei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1205-7832</orcidid><orcidid>https://orcid.org/0009-0006-9179-8047</orcidid><orcidid>https://orcid.org/0000-0003-0702-8295</orcidid><orcidid>https://orcid.org/0009-0009-7031-3313</orcidid><orcidid>https://orcid.org/0000-0003-0605-7801</orcidid></search><sort><creationdate>20240601</creationdate><title>Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler</title><author>Li, Zhenjie ; Li, Xianzhen ; Zhou, Yuxuan ; Liu, Yiqi ; Ban, Mingfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-68ffd54ddd8236c34e8cbd05a09abd0274d26a910704849372b9beff57b62b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coils</topic><topic>Couplers</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>High anti-misalignment ability</topic><topic>Inductance</topic><topic>lightweight receiver</topic><topic>Load resistance</topic><topic>Magnetic cores</topic><topic>Misalignment</topic><topic>multiple coil coupler (MCC)</topic><topic>Optical wavelength conversion</topic><topic>orthogonal experiments</topic><topic>Parameter sensitivity</topic><topic>Receivers</topic><topic>Sensitivity analysis</topic><topic>Topology</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenjie</creatorcontrib><creatorcontrib>Li, Xianzhen</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Liu, Yiqi</creatorcontrib><creatorcontrib>Ban, Mingfei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zhenjie</au><au>Li, Xianzhen</au><au>Zhou, Yuxuan</au><au>Liu, Yiqi</au><au>Ban, Mingfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>39</volume><issue>6</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's rationality is verified by analyzing the misalignment performance of the asymmetric circular coupler (ACC) with some auxiliary coils. Furthermore, a comprehensive elucidation is given, outlining the MCC's principle and structure from the magnetic field distribution and mutual inductance model. Second, combining the orthogonal experiments, Ansys Maxwell simulations, and data post-processing method, which feature a low workload and high efficiency, optimize the MCC's parameters. The design flow, misalignment performance, and parameter sensitivity analysis for the MCC are illustrated. Third, a series-series compensated WCS with a maximum system efficiency of 92.2% is constructed to demonstrate the proposed method. The experimental results show that the MCC maintains a relatively stable mutual inductance fluctuation of ±5% within a circular region whose radius is 135 mm (34% of the transmitter width). Besides, the charging current varies less than 5% within this circular region when the load resistance changes from 5 Ω to 25 Ω.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2024.3371208</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1205-7832</orcidid><orcidid>https://orcid.org/0009-0006-9179-8047</orcidid><orcidid>https://orcid.org/0000-0003-0702-8295</orcidid><orcidid>https://orcid.org/0009-0009-7031-3313</orcidid><orcidid>https://orcid.org/0000-0003-0605-7801</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2024-06, Vol.39 (6), p.1-14
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2024_3371208
source IEEE Electronic Library (IEL)
subjects Coils
Couplers
Design optimization
Design parameters
High anti-misalignment ability
Inductance
lightweight receiver
Load resistance
Magnetic cores
Misalignment
multiple coil coupler (MCC)
Optical wavelength conversion
orthogonal experiments
Parameter sensitivity
Receivers
Sensitivity analysis
Topology
wireless power transfer (WPT)
Wireless power transmission
title Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Misalignment%20Tolerance%20for%20the%20Wireless%20Charging%20System%20Using%20Multiple%20Coils%20Coupler&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Li,%20Zhenjie&rft.date=2024-06-01&rft.volume=39&rft.issue=6&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3371208&rft_dat=%3Cproquest_RIE%3E3041506603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041506603&rft_id=info:pmid/&rft_ieee_id=10452867&rfr_iscdi=true