Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler
This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2024-06, Vol.39 (6), p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on power electronics |
container_volume | 39 |
creator | Li, Zhenjie Li, Xianzhen Zhou, Yuxuan Liu, Yiqi Ban, Mingfei |
description | This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's rationality is verified by analyzing the misalignment performance of the asymmetric circular coupler (ACC) with some auxiliary coils. Furthermore, a comprehensive elucidation is given, outlining the MCC's principle and structure from the magnetic field distribution and mutual inductance model. Second, combining the orthogonal experiments, Ansys Maxwell simulations, and data post-processing method, which feature a low workload and high efficiency, optimize the MCC's parameters. The design flow, misalignment performance, and parameter sensitivity analysis for the MCC are illustrated. Third, a series-series compensated WCS with a maximum system efficiency of 92.2% is constructed to demonstrate the proposed method. The experimental results show that the MCC maintains a relatively stable mutual inductance fluctuation of ±5% within a circular region whose radius is 135 mm (34% of the transmitter width). Besides, the charging current varies less than 5% within this circular region when the load resistance changes from 5 Ω to 25 Ω. |
doi_str_mv | 10.1109/TPEL.2024.3371208 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2024_3371208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10452867</ieee_id><sourcerecordid>3041506603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-68ffd54ddd8236c34e8cbd05a09abd0274d26a910704849372b9beff57b62b523</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HXnyUfT9FLK1MFEwQ3vDGmbbhn9mEkr7N-bul149XLgec7hvAjdEpgRAunD6n2-nFGgfMZYQijIMzQhKScREEjO0QSkjCOZpuwSXXm_AyA8BjJBX4tm77of227wq_W6tpu2MW2PV11tnG4Lg6vO4X5r8Kd1pjbe42yr3WYUPg6-Nw1e-z97qHu7rw3OOlsHqBvC4K7RRaVrb25OOUXrp_kqe4mWb8-L7HEZFZSLPhKyqsqYl2UpKRMF40YWeQmxhlSHpAkvqdBpeAW45ClLaJ7mpqriJBc0jymbovvj3vDM92B8r3bd4NpwUjHgJAYhgAWKHKnCdd47U6m9s412B0VAjTWqsUY11qhONQbn7uhYY8w_nsdUioT9AvFObwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041506603</pqid></control><display><type>article</type><title>Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zhenjie ; Li, Xianzhen ; Zhou, Yuxuan ; Liu, Yiqi ; Ban, Mingfei</creator><creatorcontrib>Li, Zhenjie ; Li, Xianzhen ; Zhou, Yuxuan ; Liu, Yiqi ; Ban, Mingfei</creatorcontrib><description>This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's rationality is verified by analyzing the misalignment performance of the asymmetric circular coupler (ACC) with some auxiliary coils. Furthermore, a comprehensive elucidation is given, outlining the MCC's principle and structure from the magnetic field distribution and mutual inductance model. Second, combining the orthogonal experiments, Ansys Maxwell simulations, and data post-processing method, which feature a low workload and high efficiency, optimize the MCC's parameters. The design flow, misalignment performance, and parameter sensitivity analysis for the MCC are illustrated. Third, a series-series compensated WCS with a maximum system efficiency of 92.2% is constructed to demonstrate the proposed method. The experimental results show that the MCC maintains a relatively stable mutual inductance fluctuation of ±5% within a circular region whose radius is 135 mm (34% of the transmitter width). Besides, the charging current varies less than 5% within this circular region when the load resistance changes from 5 Ω to 25 Ω.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3371208</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Couplers ; Design optimization ; Design parameters ; High anti-misalignment ability ; Inductance ; lightweight receiver ; Load resistance ; Magnetic cores ; Misalignment ; multiple coil coupler (MCC) ; Optical wavelength conversion ; orthogonal experiments ; Parameter sensitivity ; Receivers ; Sensitivity analysis ; Topology ; wireless power transfer (WPT) ; Wireless power transmission</subject><ispartof>IEEE transactions on power electronics, 2024-06, Vol.39 (6), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-68ffd54ddd8236c34e8cbd05a09abd0274d26a910704849372b9beff57b62b523</cites><orcidid>0000-0003-1205-7832 ; 0009-0006-9179-8047 ; 0000-0003-0702-8295 ; 0009-0009-7031-3313 ; 0000-0003-0605-7801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10452867$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10452867$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Zhenjie</creatorcontrib><creatorcontrib>Li, Xianzhen</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Liu, Yiqi</creatorcontrib><creatorcontrib>Ban, Mingfei</creatorcontrib><title>Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's rationality is verified by analyzing the misalignment performance of the asymmetric circular coupler (ACC) with some auxiliary coils. Furthermore, a comprehensive elucidation is given, outlining the MCC's principle and structure from the magnetic field distribution and mutual inductance model. Second, combining the orthogonal experiments, Ansys Maxwell simulations, and data post-processing method, which feature a low workload and high efficiency, optimize the MCC's parameters. The design flow, misalignment performance, and parameter sensitivity analysis for the MCC are illustrated. Third, a series-series compensated WCS with a maximum system efficiency of 92.2% is constructed to demonstrate the proposed method. The experimental results show that the MCC maintains a relatively stable mutual inductance fluctuation of ±5% within a circular region whose radius is 135 mm (34% of the transmitter width). Besides, the charging current varies less than 5% within this circular region when the load resistance changes from 5 Ω to 25 Ω.</description><subject>Coils</subject><subject>Couplers</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>High anti-misalignment ability</subject><subject>Inductance</subject><subject>lightweight receiver</subject><subject>Load resistance</subject><subject>Magnetic cores</subject><subject>Misalignment</subject><subject>multiple coil coupler (MCC)</subject><subject>Optical wavelength conversion</subject><subject>orthogonal experiments</subject><subject>Parameter sensitivity</subject><subject>Receivers</subject><subject>Sensitivity analysis</subject><subject>Topology</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HXnyUfT9FLK1MFEwQ3vDGmbbhn9mEkr7N-bul149XLgec7hvAjdEpgRAunD6n2-nFGgfMZYQijIMzQhKScREEjO0QSkjCOZpuwSXXm_AyA8BjJBX4tm77of227wq_W6tpu2MW2PV11tnG4Lg6vO4X5r8Kd1pjbe42yr3WYUPg6-Nw1e-z97qHu7rw3OOlsHqBvC4K7RRaVrb25OOUXrp_kqe4mWb8-L7HEZFZSLPhKyqsqYl2UpKRMF40YWeQmxhlSHpAkvqdBpeAW45ClLaJ7mpqriJBc0jymbovvj3vDM92B8r3bd4NpwUjHgJAYhgAWKHKnCdd47U6m9s412B0VAjTWqsUY11qhONQbn7uhYY8w_nsdUioT9AvFObwY</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Li, Zhenjie</creator><creator>Li, Xianzhen</creator><creator>Zhou, Yuxuan</creator><creator>Liu, Yiqi</creator><creator>Ban, Mingfei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1205-7832</orcidid><orcidid>https://orcid.org/0009-0006-9179-8047</orcidid><orcidid>https://orcid.org/0000-0003-0702-8295</orcidid><orcidid>https://orcid.org/0009-0009-7031-3313</orcidid><orcidid>https://orcid.org/0000-0003-0605-7801</orcidid></search><sort><creationdate>20240601</creationdate><title>Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler</title><author>Li, Zhenjie ; Li, Xianzhen ; Zhou, Yuxuan ; Liu, Yiqi ; Ban, Mingfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-68ffd54ddd8236c34e8cbd05a09abd0274d26a910704849372b9beff57b62b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coils</topic><topic>Couplers</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>High anti-misalignment ability</topic><topic>Inductance</topic><topic>lightweight receiver</topic><topic>Load resistance</topic><topic>Magnetic cores</topic><topic>Misalignment</topic><topic>multiple coil coupler (MCC)</topic><topic>Optical wavelength conversion</topic><topic>orthogonal experiments</topic><topic>Parameter sensitivity</topic><topic>Receivers</topic><topic>Sensitivity analysis</topic><topic>Topology</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenjie</creatorcontrib><creatorcontrib>Li, Xianzhen</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Liu, Yiqi</creatorcontrib><creatorcontrib>Ban, Mingfei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zhenjie</au><au>Li, Xianzhen</au><au>Zhou, Yuxuan</au><au>Liu, Yiqi</au><au>Ban, Mingfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>39</volume><issue>6</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper proposes a new multiple coils coupler (MCC) comprising a transmitter with numerous circular auxiliary coils connected in series and a lightweight receiver with a circular coil to ensure high anti-misalignment ability for the wireless charging system (WCS). First, the proposed MCC's rationality is verified by analyzing the misalignment performance of the asymmetric circular coupler (ACC) with some auxiliary coils. Furthermore, a comprehensive elucidation is given, outlining the MCC's principle and structure from the magnetic field distribution and mutual inductance model. Second, combining the orthogonal experiments, Ansys Maxwell simulations, and data post-processing method, which feature a low workload and high efficiency, optimize the MCC's parameters. The design flow, misalignment performance, and parameter sensitivity analysis for the MCC are illustrated. Third, a series-series compensated WCS with a maximum system efficiency of 92.2% is constructed to demonstrate the proposed method. The experimental results show that the MCC maintains a relatively stable mutual inductance fluctuation of ±5% within a circular region whose radius is 135 mm (34% of the transmitter width). Besides, the charging current varies less than 5% within this circular region when the load resistance changes from 5 Ω to 25 Ω.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2024.3371208</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1205-7832</orcidid><orcidid>https://orcid.org/0009-0006-9179-8047</orcidid><orcidid>https://orcid.org/0000-0003-0702-8295</orcidid><orcidid>https://orcid.org/0009-0009-7031-3313</orcidid><orcidid>https://orcid.org/0000-0003-0605-7801</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2024-06, Vol.39 (6), p.1-14 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2024_3371208 |
source | IEEE Electronic Library (IEL) |
subjects | Coils Couplers Design optimization Design parameters High anti-misalignment ability Inductance lightweight receiver Load resistance Magnetic cores Misalignment multiple coil coupler (MCC) Optical wavelength conversion orthogonal experiments Parameter sensitivity Receivers Sensitivity analysis Topology wireless power transfer (WPT) Wireless power transmission |
title | Improving Misalignment Tolerance for the Wireless Charging System Using Multiple Coils Coupler |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Misalignment%20Tolerance%20for%20the%20Wireless%20Charging%20System%20Using%20Multiple%20Coils%20Coupler&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Li,%20Zhenjie&rft.date=2024-06-01&rft.volume=39&rft.issue=6&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3371208&rft_dat=%3Cproquest_RIE%3E3041506603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041506603&rft_id=info:pmid/&rft_ieee_id=10452867&rfr_iscdi=true |