An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy

Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2023-09, Vol.38 (9), p.1-14
Hauptverfasser: Liang, Ge, Huang, Sheng, Liao, Wu, Liu, Yu, Feng, Congqi, Wu, Xuan, Huang, Shoudao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 9
container_start_page 1
container_title IEEE transactions on power electronics
container_volume 38
creator Liang, Ge
Huang, Sheng
Liao, Wu
Liu, Yu
Feng, Congqi
Wu, Xuan
Huang, Shoudao
description Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the interconnected communication cables between controllers may fail, limit the fault tolerance of MTP-PMSG. Therefore, this paper proposes an enhanced distributed control (EDC) architecture without interconnected communication cables of MTP-PMSG for improving redundancy. The sensorless control and harmonic current suppression algorithm are considered and implemented in the EDC architecture. First, this paper analyzes the magnetic field coupling between the winding sets of MTP-PMSG, and the variation law of equivalent inductance of the winding sets under the condition of arbitrary current sharing is obtained. Then, an enhanced distributed sensorless control (EDSC) method in EDC architecture is proposed based on the equivalent inductance. Furthermore, this paper proposes a model-free predictive harmonic current (MFPHC) suppression method to solve the MTP-PMSG's inherent harmonic problem in the EDC architecture. The effectiveness of the proposed methods is verified by the comparative simulations and experiments in a dual three-phase PMSG (DTP-PMSG) with arbitrary current sharing of winding sets.
doi_str_mv 10.1109/TPEL.2023.3288049
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2023_3288049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10158379</ieee_id><sourcerecordid>2844896274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-a5c88ec089fc82ce69c70a8d5854abf191a68016bca44bf9ff1419c73641db363</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqXwAEgMlphTfLGT2GNVSqnUigrKbDnOmaRKk2InSH17UpWB6W74_v9OHyH3wCYATD1tN_PVJGYxn_BYSibUBRmBEhAxYNklGTEpk0gqxa_JTQg7xkAkDEYknzZ03pSmsVjQ5yp0vsr7bthnbdP5tqZTb8uqQ9v1Hmnr6Lqvu-pQI92WHjHalCYg3aw_FtS1ni73B9_-VM0Xfceib4qh93hLrpypA979zTH5fJlvZ6_R6m2xnE1XkY2V6CKTWCnRMqmclbHFVNmMGVkkMhEmd6DApJJBmlsjRO6UcyBgYHgqoMh5ysfk8dw7vPDdY-j0ru19M5zUsRRCqjTOxEDBmbK-DcGj0wdf7Y0_amD6pFKfVOqTSv2ncsg8nDMVIv7jIZE8U_wXRsRwGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844896274</pqid></control><display><type>article</type><title>An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Ge ; Huang, Sheng ; Liao, Wu ; Liu, Yu ; Feng, Congqi ; Wu, Xuan ; Huang, Shoudao</creator><creatorcontrib>Liang, Ge ; Huang, Sheng ; Liao, Wu ; Liu, Yu ; Feng, Congqi ; Wu, Xuan ; Huang, Shoudao</creatorcontrib><description>Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the interconnected communication cables between controllers may fail, limit the fault tolerance of MTP-PMSG. Therefore, this paper proposes an enhanced distributed control (EDC) architecture without interconnected communication cables of MTP-PMSG for improving redundancy. The sensorless control and harmonic current suppression algorithm are considered and implemented in the EDC architecture. First, this paper analyzes the magnetic field coupling between the winding sets of MTP-PMSG, and the variation law of equivalent inductance of the winding sets under the condition of arbitrary current sharing is obtained. Then, an enhanced distributed sensorless control (EDSC) method in EDC architecture is proposed based on the equivalent inductance. Furthermore, this paper proposes a model-free predictive harmonic current (MFPHC) suppression method to solve the MTP-PMSG's inherent harmonic problem in the EDC architecture. The effectiveness of the proposed methods is verified by the comparative simulations and experiments in a dual three-phase PMSG (DTP-PMSG) with arbitrary current sharing of winding sets.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3288049</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Communication cables ; Control methods ; Couplings ; Current sharing ; Decentralized control ; Distributed control ; Equivalence ; Fault tolerance ; Harmonic analysis ; Inductance ; Mathematical models ; model-free predictive control ; multiple three-phase permanent magnet synchronous generator (MTP-PMSG) ; Permanent magnets ; Redundancy ; sensorless control ; Synchronous machines ; Wind power generation ; Winding ; Windings</subject><ispartof>IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-a5c88ec089fc82ce69c70a8d5854abf191a68016bca44bf9ff1419c73641db363</citedby><cites>FETCH-LOGICAL-c294t-a5c88ec089fc82ce69c70a8d5854abf191a68016bca44bf9ff1419c73641db363</cites><orcidid>0000-0002-6792-7113 ; 0000-0001-5737-0879 ; 0000-0002-7988-2143 ; 0000-0002-6923-9605 ; 0000-0003-0126-4430 ; 0000-0003-0582-3906 ; 0000-0002-0115-1447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10158379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10158379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Ge</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Liao, Wu</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Feng, Congqi</creatorcontrib><creatorcontrib>Wu, Xuan</creatorcontrib><creatorcontrib>Huang, Shoudao</creatorcontrib><title>An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the interconnected communication cables between controllers may fail, limit the fault tolerance of MTP-PMSG. Therefore, this paper proposes an enhanced distributed control (EDC) architecture without interconnected communication cables of MTP-PMSG for improving redundancy. The sensorless control and harmonic current suppression algorithm are considered and implemented in the EDC architecture. First, this paper analyzes the magnetic field coupling between the winding sets of MTP-PMSG, and the variation law of equivalent inductance of the winding sets under the condition of arbitrary current sharing is obtained. Then, an enhanced distributed sensorless control (EDSC) method in EDC architecture is proposed based on the equivalent inductance. Furthermore, this paper proposes a model-free predictive harmonic current (MFPHC) suppression method to solve the MTP-PMSG's inherent harmonic problem in the EDC architecture. The effectiveness of the proposed methods is verified by the comparative simulations and experiments in a dual three-phase PMSG (DTP-PMSG) with arbitrary current sharing of winding sets.</description><subject>Algorithms</subject><subject>Communication cables</subject><subject>Control methods</subject><subject>Couplings</subject><subject>Current sharing</subject><subject>Decentralized control</subject><subject>Distributed control</subject><subject>Equivalence</subject><subject>Fault tolerance</subject><subject>Harmonic analysis</subject><subject>Inductance</subject><subject>Mathematical models</subject><subject>model-free predictive control</subject><subject>multiple three-phase permanent magnet synchronous generator (MTP-PMSG)</subject><subject>Permanent magnets</subject><subject>Redundancy</subject><subject>sensorless control</subject><subject>Synchronous machines</subject><subject>Wind power generation</subject><subject>Winding</subject><subject>Windings</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAQhi0EEqXwAEgMlphTfLGT2GNVSqnUigrKbDnOmaRKk2InSH17UpWB6W74_v9OHyH3wCYATD1tN_PVJGYxn_BYSibUBRmBEhAxYNklGTEpk0gqxa_JTQg7xkAkDEYknzZ03pSmsVjQ5yp0vsr7bthnbdP5tqZTb8uqQ9v1Hmnr6Lqvu-pQI92WHjHalCYg3aw_FtS1ni73B9_-VM0Xfceib4qh93hLrpypA979zTH5fJlvZ6_R6m2xnE1XkY2V6CKTWCnRMqmclbHFVNmMGVkkMhEmd6DApJJBmlsjRO6UcyBgYHgqoMh5ysfk8dw7vPDdY-j0ru19M5zUsRRCqjTOxEDBmbK-DcGj0wdf7Y0_amD6pFKfVOqTSv2ncsg8nDMVIv7jIZE8U_wXRsRwGg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Liang, Ge</creator><creator>Huang, Sheng</creator><creator>Liao, Wu</creator><creator>Liu, Yu</creator><creator>Feng, Congqi</creator><creator>Wu, Xuan</creator><creator>Huang, Shoudao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6792-7113</orcidid><orcidid>https://orcid.org/0000-0001-5737-0879</orcidid><orcidid>https://orcid.org/0000-0002-7988-2143</orcidid><orcidid>https://orcid.org/0000-0002-6923-9605</orcidid><orcidid>https://orcid.org/0000-0003-0126-4430</orcidid><orcidid>https://orcid.org/0000-0003-0582-3906</orcidid><orcidid>https://orcid.org/0000-0002-0115-1447</orcidid></search><sort><creationdate>20230901</creationdate><title>An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy</title><author>Liang, Ge ; Huang, Sheng ; Liao, Wu ; Liu, Yu ; Feng, Congqi ; Wu, Xuan ; Huang, Shoudao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-a5c88ec089fc82ce69c70a8d5854abf191a68016bca44bf9ff1419c73641db363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Communication cables</topic><topic>Control methods</topic><topic>Couplings</topic><topic>Current sharing</topic><topic>Decentralized control</topic><topic>Distributed control</topic><topic>Equivalence</topic><topic>Fault tolerance</topic><topic>Harmonic analysis</topic><topic>Inductance</topic><topic>Mathematical models</topic><topic>model-free predictive control</topic><topic>multiple three-phase permanent magnet synchronous generator (MTP-PMSG)</topic><topic>Permanent magnets</topic><topic>Redundancy</topic><topic>sensorless control</topic><topic>Synchronous machines</topic><topic>Wind power generation</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Ge</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Liao, Wu</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Feng, Congqi</creatorcontrib><creatorcontrib>Wu, Xuan</creatorcontrib><creatorcontrib>Huang, Shoudao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Ge</au><au>Huang, Sheng</au><au>Liao, Wu</au><au>Liu, Yu</au><au>Feng, Congqi</au><au>Wu, Xuan</au><au>Huang, Shoudao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>38</volume><issue>9</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the interconnected communication cables between controllers may fail, limit the fault tolerance of MTP-PMSG. Therefore, this paper proposes an enhanced distributed control (EDC) architecture without interconnected communication cables of MTP-PMSG for improving redundancy. The sensorless control and harmonic current suppression algorithm are considered and implemented in the EDC architecture. First, this paper analyzes the magnetic field coupling between the winding sets of MTP-PMSG, and the variation law of equivalent inductance of the winding sets under the condition of arbitrary current sharing is obtained. Then, an enhanced distributed sensorless control (EDSC) method in EDC architecture is proposed based on the equivalent inductance. Furthermore, this paper proposes a model-free predictive harmonic current (MFPHC) suppression method to solve the MTP-PMSG's inherent harmonic problem in the EDC architecture. The effectiveness of the proposed methods is verified by the comparative simulations and experiments in a dual three-phase PMSG (DTP-PMSG) with arbitrary current sharing of winding sets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3288049</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6792-7113</orcidid><orcidid>https://orcid.org/0000-0001-5737-0879</orcidid><orcidid>https://orcid.org/0000-0002-7988-2143</orcidid><orcidid>https://orcid.org/0000-0002-6923-9605</orcidid><orcidid>https://orcid.org/0000-0003-0126-4430</orcidid><orcidid>https://orcid.org/0000-0003-0582-3906</orcidid><orcidid>https://orcid.org/0000-0002-0115-1447</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.1-14
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2023_3288049
source IEEE Electronic Library (IEL)
subjects Algorithms
Communication cables
Control methods
Couplings
Current sharing
Decentralized control
Distributed control
Equivalence
Fault tolerance
Harmonic analysis
Inductance
Mathematical models
model-free predictive control
multiple three-phase permanent magnet synchronous generator (MTP-PMSG)
Permanent magnets
Redundancy
sensorless control
Synchronous machines
Wind power generation
Winding
Windings
title An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Distributed%20Control%20Architecture%20of%20Multiple%20Three-Phase%20PMSG%20for%20Improving%20Redundancy&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Liang,%20Ge&rft.date=2023-09-01&rft.volume=38&rft.issue=9&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3288049&rft_dat=%3Cproquest_RIE%3E2844896274%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844896274&rft_id=info:pmid/&rft_ieee_id=10158379&rfr_iscdi=true