An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy
Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2023-09, Vol.38 (9), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE transactions on power electronics |
container_volume | 38 |
creator | Liang, Ge Huang, Sheng Liao, Wu Liu, Yu Feng, Congqi Wu, Xuan Huang, Shoudao |
description | Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the interconnected communication cables between controllers may fail, limit the fault tolerance of MTP-PMSG. Therefore, this paper proposes an enhanced distributed control (EDC) architecture without interconnected communication cables of MTP-PMSG for improving redundancy. The sensorless control and harmonic current suppression algorithm are considered and implemented in the EDC architecture. First, this paper analyzes the magnetic field coupling between the winding sets of MTP-PMSG, and the variation law of equivalent inductance of the winding sets under the condition of arbitrary current sharing is obtained. Then, an enhanced distributed sensorless control (EDSC) method in EDC architecture is proposed based on the equivalent inductance. Furthermore, this paper proposes a model-free predictive harmonic current (MFPHC) suppression method to solve the MTP-PMSG's inherent harmonic problem in the EDC architecture. The effectiveness of the proposed methods is verified by the comparative simulations and experiments in a dual three-phase PMSG (DTP-PMSG) with arbitrary current sharing of winding sets. |
doi_str_mv | 10.1109/TPEL.2023.3288049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2023_3288049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10158379</ieee_id><sourcerecordid>2844896274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-a5c88ec089fc82ce69c70a8d5854abf191a68016bca44bf9ff1419c73641db363</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqXwAEgMlphTfLGT2GNVSqnUigrKbDnOmaRKk2InSH17UpWB6W74_v9OHyH3wCYATD1tN_PVJGYxn_BYSibUBRmBEhAxYNklGTEpk0gqxa_JTQg7xkAkDEYknzZ03pSmsVjQ5yp0vsr7bthnbdP5tqZTb8uqQ9v1Hmnr6Lqvu-pQI92WHjHalCYg3aw_FtS1ni73B9_-VM0Xfceib4qh93hLrpypA979zTH5fJlvZ6_R6m2xnE1XkY2V6CKTWCnRMqmclbHFVNmMGVkkMhEmd6DApJJBmlsjRO6UcyBgYHgqoMh5ysfk8dw7vPDdY-j0ru19M5zUsRRCqjTOxEDBmbK-DcGj0wdf7Y0_amD6pFKfVOqTSv2ncsg8nDMVIv7jIZE8U_wXRsRwGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844896274</pqid></control><display><type>article</type><title>An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Ge ; Huang, Sheng ; Liao, Wu ; Liu, Yu ; Feng, Congqi ; Wu, Xuan ; Huang, Shoudao</creator><creatorcontrib>Liang, Ge ; Huang, Sheng ; Liao, Wu ; Liu, Yu ; Feng, Congqi ; Wu, Xuan ; Huang, Shoudao</creatorcontrib><description>Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the interconnected communication cables between controllers may fail, limit the fault tolerance of MTP-PMSG. Therefore, this paper proposes an enhanced distributed control (EDC) architecture without interconnected communication cables of MTP-PMSG for improving redundancy. The sensorless control and harmonic current suppression algorithm are considered and implemented in the EDC architecture. First, this paper analyzes the magnetic field coupling between the winding sets of MTP-PMSG, and the variation law of equivalent inductance of the winding sets under the condition of arbitrary current sharing is obtained. Then, an enhanced distributed sensorless control (EDSC) method in EDC architecture is proposed based on the equivalent inductance. Furthermore, this paper proposes a model-free predictive harmonic current (MFPHC) suppression method to solve the MTP-PMSG's inherent harmonic problem in the EDC architecture. The effectiveness of the proposed methods is verified by the comparative simulations and experiments in a dual three-phase PMSG (DTP-PMSG) with arbitrary current sharing of winding sets.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3288049</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Communication cables ; Control methods ; Couplings ; Current sharing ; Decentralized control ; Distributed control ; Equivalence ; Fault tolerance ; Harmonic analysis ; Inductance ; Mathematical models ; model-free predictive control ; multiple three-phase permanent magnet synchronous generator (MTP-PMSG) ; Permanent magnets ; Redundancy ; sensorless control ; Synchronous machines ; Wind power generation ; Winding ; Windings</subject><ispartof>IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-a5c88ec089fc82ce69c70a8d5854abf191a68016bca44bf9ff1419c73641db363</citedby><cites>FETCH-LOGICAL-c294t-a5c88ec089fc82ce69c70a8d5854abf191a68016bca44bf9ff1419c73641db363</cites><orcidid>0000-0002-6792-7113 ; 0000-0001-5737-0879 ; 0000-0002-7988-2143 ; 0000-0002-6923-9605 ; 0000-0003-0126-4430 ; 0000-0003-0582-3906 ; 0000-0002-0115-1447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10158379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10158379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Ge</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Liao, Wu</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Feng, Congqi</creatorcontrib><creatorcontrib>Wu, Xuan</creatorcontrib><creatorcontrib>Huang, Shoudao</creatorcontrib><title>An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the interconnected communication cables between controllers may fail, limit the fault tolerance of MTP-PMSG. Therefore, this paper proposes an enhanced distributed control (EDC) architecture without interconnected communication cables of MTP-PMSG for improving redundancy. The sensorless control and harmonic current suppression algorithm are considered and implemented in the EDC architecture. First, this paper analyzes the magnetic field coupling between the winding sets of MTP-PMSG, and the variation law of equivalent inductance of the winding sets under the condition of arbitrary current sharing is obtained. Then, an enhanced distributed sensorless control (EDSC) method in EDC architecture is proposed based on the equivalent inductance. Furthermore, this paper proposes a model-free predictive harmonic current (MFPHC) suppression method to solve the MTP-PMSG's inherent harmonic problem in the EDC architecture. The effectiveness of the proposed methods is verified by the comparative simulations and experiments in a dual three-phase PMSG (DTP-PMSG) with arbitrary current sharing of winding sets.</description><subject>Algorithms</subject><subject>Communication cables</subject><subject>Control methods</subject><subject>Couplings</subject><subject>Current sharing</subject><subject>Decentralized control</subject><subject>Distributed control</subject><subject>Equivalence</subject><subject>Fault tolerance</subject><subject>Harmonic analysis</subject><subject>Inductance</subject><subject>Mathematical models</subject><subject>model-free predictive control</subject><subject>multiple three-phase permanent magnet synchronous generator (MTP-PMSG)</subject><subject>Permanent magnets</subject><subject>Redundancy</subject><subject>sensorless control</subject><subject>Synchronous machines</subject><subject>Wind power generation</subject><subject>Winding</subject><subject>Windings</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAQhi0EEqXwAEgMlphTfLGT2GNVSqnUigrKbDnOmaRKk2InSH17UpWB6W74_v9OHyH3wCYATD1tN_PVJGYxn_BYSibUBRmBEhAxYNklGTEpk0gqxa_JTQg7xkAkDEYknzZ03pSmsVjQ5yp0vsr7bthnbdP5tqZTb8uqQ9v1Hmnr6Lqvu-pQI92WHjHalCYg3aw_FtS1ni73B9_-VM0Xfceib4qh93hLrpypA979zTH5fJlvZ6_R6m2xnE1XkY2V6CKTWCnRMqmclbHFVNmMGVkkMhEmd6DApJJBmlsjRO6UcyBgYHgqoMh5ysfk8dw7vPDdY-j0ru19M5zUsRRCqjTOxEDBmbK-DcGj0wdf7Y0_amD6pFKfVOqTSv2ncsg8nDMVIv7jIZE8U_wXRsRwGg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Liang, Ge</creator><creator>Huang, Sheng</creator><creator>Liao, Wu</creator><creator>Liu, Yu</creator><creator>Feng, Congqi</creator><creator>Wu, Xuan</creator><creator>Huang, Shoudao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6792-7113</orcidid><orcidid>https://orcid.org/0000-0001-5737-0879</orcidid><orcidid>https://orcid.org/0000-0002-7988-2143</orcidid><orcidid>https://orcid.org/0000-0002-6923-9605</orcidid><orcidid>https://orcid.org/0000-0003-0126-4430</orcidid><orcidid>https://orcid.org/0000-0003-0582-3906</orcidid><orcidid>https://orcid.org/0000-0002-0115-1447</orcidid></search><sort><creationdate>20230901</creationdate><title>An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy</title><author>Liang, Ge ; Huang, Sheng ; Liao, Wu ; Liu, Yu ; Feng, Congqi ; Wu, Xuan ; Huang, Shoudao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-a5c88ec089fc82ce69c70a8d5854abf191a68016bca44bf9ff1419c73641db363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Communication cables</topic><topic>Control methods</topic><topic>Couplings</topic><topic>Current sharing</topic><topic>Decentralized control</topic><topic>Distributed control</topic><topic>Equivalence</topic><topic>Fault tolerance</topic><topic>Harmonic analysis</topic><topic>Inductance</topic><topic>Mathematical models</topic><topic>model-free predictive control</topic><topic>multiple three-phase permanent magnet synchronous generator (MTP-PMSG)</topic><topic>Permanent magnets</topic><topic>Redundancy</topic><topic>sensorless control</topic><topic>Synchronous machines</topic><topic>Wind power generation</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Ge</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Liao, Wu</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Feng, Congqi</creatorcontrib><creatorcontrib>Wu, Xuan</creatorcontrib><creatorcontrib>Huang, Shoudao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Ge</au><au>Huang, Sheng</au><au>Liao, Wu</au><au>Liu, Yu</au><au>Feng, Congqi</au><au>Wu, Xuan</au><au>Huang, Shoudao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>38</volume><issue>9</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Multiple three-phase permanent magnet synchronous generator (MTP-PMSG) has excellent fault-tolerant features in theory. However, the commonly used control architectures, such as the centralized control architecture with only one central controller and the distributed control architecture where the interconnected communication cables between controllers may fail, limit the fault tolerance of MTP-PMSG. Therefore, this paper proposes an enhanced distributed control (EDC) architecture without interconnected communication cables of MTP-PMSG for improving redundancy. The sensorless control and harmonic current suppression algorithm are considered and implemented in the EDC architecture. First, this paper analyzes the magnetic field coupling between the winding sets of MTP-PMSG, and the variation law of equivalent inductance of the winding sets under the condition of arbitrary current sharing is obtained. Then, an enhanced distributed sensorless control (EDSC) method in EDC architecture is proposed based on the equivalent inductance. Furthermore, this paper proposes a model-free predictive harmonic current (MFPHC) suppression method to solve the MTP-PMSG's inherent harmonic problem in the EDC architecture. The effectiveness of the proposed methods is verified by the comparative simulations and experiments in a dual three-phase PMSG (DTP-PMSG) with arbitrary current sharing of winding sets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3288049</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6792-7113</orcidid><orcidid>https://orcid.org/0000-0001-5737-0879</orcidid><orcidid>https://orcid.org/0000-0002-7988-2143</orcidid><orcidid>https://orcid.org/0000-0002-6923-9605</orcidid><orcidid>https://orcid.org/0000-0003-0126-4430</orcidid><orcidid>https://orcid.org/0000-0003-0582-3906</orcidid><orcidid>https://orcid.org/0000-0002-0115-1447</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.1-14 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2023_3288049 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Communication cables Control methods Couplings Current sharing Decentralized control Distributed control Equivalence Fault tolerance Harmonic analysis Inductance Mathematical models model-free predictive control multiple three-phase permanent magnet synchronous generator (MTP-PMSG) Permanent magnets Redundancy sensorless control Synchronous machines Wind power generation Winding Windings |
title | An Enhanced Distributed Control Architecture of Multiple Three-Phase PMSG for Improving Redundancy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Distributed%20Control%20Architecture%20of%20Multiple%20Three-Phase%20PMSG%20for%20Improving%20Redundancy&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Liang,%20Ge&rft.date=2023-09-01&rft.volume=38&rft.issue=9&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3288049&rft_dat=%3Cproquest_RIE%3E2844896274%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844896274&rft_id=info:pmid/&rft_ieee_id=10158379&rfr_iscdi=true |