Simplified Algebraic Estimation Technique for Sensor Count Reduction in Single-Phase Converters With an Active Power Buffer

Active pulsating power buffering (APPB) is an emerging technology that can effectively minimize the energy storage requirement of single-phase power conversion systems, potentially leading to high density and high reliability design. Nonetheless, the implementation of APPB generally requires the add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2021-10, Vol.36 (10), p.11444-11455
Hauptverfasser: Yuan, Huawei, Li, Sinan, Tan, Siew-Chong, Hui, Ron Shu-Yuen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11455
container_issue 10
container_start_page 11444
container_title IEEE transactions on power electronics
container_volume 36
creator Yuan, Huawei
Li, Sinan
Tan, Siew-Chong
Hui, Ron Shu-Yuen
description Active pulsating power buffering (APPB) is an emerging technology that can effectively minimize the energy storage requirement of single-phase power conversion systems, potentially leading to high density and high reliability design. Nonetheless, the implementation of APPB generally requires the addition of excessive number of sensors in the circuit. Employing many sensors not only increases the system's volume and cost, but also undermines the system's robustness. Existing methods of reducing the sensor count in single-phase converters with an APPB suffer from issues such as high design complexity, noise sensitivity, and/or computational complexity. In this article, a simplified algebraic estimation technique is proposed to tackle the high sensor count problem. The proposed technique is intuitive to design and applicable to different topologies. It can effectively reduce the number of sensors while yielding similar or even better system's performance than that with a full set of sensors. Moreover, the technique features very low computational complexity, and can thus be easily implemented by low-cost microcontrollers. Experiments are conducted to verify the feasibilities of the proposed estimation and sensor reduction method. With this method, the sensor count can be reduced by 50%, while achieving a nearly 20-times computational time reduction as compared to that of the conventional method.
doi_str_mv 10.1109/TPEL.2021.3067620
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2021_3067620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9382116</ieee_id><sourcerecordid>2547642666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-423c9ff2d8f0f771765ea26a1eee7008907ebe6cf880070ee6a6b7b78c8ef8263</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN15krZJejnH_ICBw028LG12smV06UzaifjnbZ14dS7O856Ph5BrBiPGILtbzqezEQfORjEIKTickAHLEhYBA3lKBqBUGqksi8_JRQhbAJakwAbke2F3-8oaiys6rtZY-sJqOg2N3RWNrR1dot44-9EiNbWnC3ShK5O6dQ19xVWrfyHr6MK6dYXRfFME7PrugL5BH-i7bTa0cHTckQek8_oTPb1vjUF_Sc5MUQW8-qtD8vYwXU6eotnL4_NkPIs0z-ImSnisM2P4ShkwUjIpUiy4KBgiSgCVgcQShTZKAUhAFIUoZSmVVmgUF_GQ3B7n7n3dPRKafFu33nUrc54mUiRciJ5iR0r7OgSPJt_7ToL_yhnkveO8d5z3jvM_x13m5pix3S3_fBYrzpiIfwBsHnlP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547642666</pqid></control><display><type>article</type><title>Simplified Algebraic Estimation Technique for Sensor Count Reduction in Single-Phase Converters With an Active Power Buffer</title><source>IEEE Electronic Library (IEL)</source><creator>Yuan, Huawei ; Li, Sinan ; Tan, Siew-Chong ; Hui, Ron Shu-Yuen</creator><creatorcontrib>Yuan, Huawei ; Li, Sinan ; Tan, Siew-Chong ; Hui, Ron Shu-Yuen</creatorcontrib><description>Active pulsating power buffering (APPB) is an emerging technology that can effectively minimize the energy storage requirement of single-phase power conversion systems, potentially leading to high density and high reliability design. Nonetheless, the implementation of APPB generally requires the addition of excessive number of sensors in the circuit. Employing many sensors not only increases the system's volume and cost, but also undermines the system's robustness. Existing methods of reducing the sensor count in single-phase converters with an APPB suffer from issues such as high design complexity, noise sensitivity, and/or computational complexity. In this article, a simplified algebraic estimation technique is proposed to tackle the high sensor count problem. The proposed technique is intuitive to design and applicable to different topologies. It can effectively reduce the number of sensors while yielding similar or even better system's performance than that with a full set of sensors. Moreover, the technique features very low computational complexity, and can thus be easily implemented by low-cost microcontrollers. Experiments are conducted to verify the feasibilities of the proposed estimation and sensor reduction method. With this method, the sensor count can be reduced by 50%, while achieving a nearly 20-times computational time reduction as compared to that of the conventional method.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3067620</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Algebraic estimation ; Buffers ; Circuits ; Complexity ; Computational complexity ; Computing time ; Converters ; Energy conversion ; Energy storage ; Estimation ; low computational cost ; Microcontrollers ; New technology ; Noise sensitivity ; Observers ; power decoupling ; pulsating power buffer ; Rectifiers ; Reliability ; sensor reduction ; Sensors ; single-phase converters ; System effectiveness ; Topology ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2021-10, Vol.36 (10), p.11444-11455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-423c9ff2d8f0f771765ea26a1eee7008907ebe6cf880070ee6a6b7b78c8ef8263</citedby><cites>FETCH-LOGICAL-c293t-423c9ff2d8f0f771765ea26a1eee7008907ebe6cf880070ee6a6b7b78c8ef8263</cites><orcidid>0000-0002-0575-1159 ; 0000-0001-9007-8749 ; 0000-0002-5992-6559 ; 0000-0001-9519-2321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9382116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9382116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuan, Huawei</creatorcontrib><creatorcontrib>Li, Sinan</creatorcontrib><creatorcontrib>Tan, Siew-Chong</creatorcontrib><creatorcontrib>Hui, Ron Shu-Yuen</creatorcontrib><title>Simplified Algebraic Estimation Technique for Sensor Count Reduction in Single-Phase Converters With an Active Power Buffer</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Active pulsating power buffering (APPB) is an emerging technology that can effectively minimize the energy storage requirement of single-phase power conversion systems, potentially leading to high density and high reliability design. Nonetheless, the implementation of APPB generally requires the addition of excessive number of sensors in the circuit. Employing many sensors not only increases the system's volume and cost, but also undermines the system's robustness. Existing methods of reducing the sensor count in single-phase converters with an APPB suffer from issues such as high design complexity, noise sensitivity, and/or computational complexity. In this article, a simplified algebraic estimation technique is proposed to tackle the high sensor count problem. The proposed technique is intuitive to design and applicable to different topologies. It can effectively reduce the number of sensors while yielding similar or even better system's performance than that with a full set of sensors. Moreover, the technique features very low computational complexity, and can thus be easily implemented by low-cost microcontrollers. Experiments are conducted to verify the feasibilities of the proposed estimation and sensor reduction method. With this method, the sensor count can be reduced by 50%, while achieving a nearly 20-times computational time reduction as compared to that of the conventional method.</description><subject>Algebra</subject><subject>Algebraic estimation</subject><subject>Buffers</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Computing time</subject><subject>Converters</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Estimation</subject><subject>low computational cost</subject><subject>Microcontrollers</subject><subject>New technology</subject><subject>Noise sensitivity</subject><subject>Observers</subject><subject>power decoupling</subject><subject>pulsating power buffer</subject><subject>Rectifiers</subject><subject>Reliability</subject><subject>sensor reduction</subject><subject>Sensors</subject><subject>single-phase converters</subject><subject>System effectiveness</subject><subject>Topology</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN15krZJejnH_ICBw028LG12smV06UzaifjnbZ14dS7O856Ph5BrBiPGILtbzqezEQfORjEIKTickAHLEhYBA3lKBqBUGqksi8_JRQhbAJakwAbke2F3-8oaiys6rtZY-sJqOg2N3RWNrR1dot44-9EiNbWnC3ShK5O6dQ19xVWrfyHr6MK6dYXRfFME7PrugL5BH-i7bTa0cHTckQek8_oTPb1vjUF_Sc5MUQW8-qtD8vYwXU6eotnL4_NkPIs0z-ImSnisM2P4ShkwUjIpUiy4KBgiSgCVgcQShTZKAUhAFIUoZSmVVmgUF_GQ3B7n7n3dPRKafFu33nUrc54mUiRciJ5iR0r7OgSPJt_7ToL_yhnkveO8d5z3jvM_x13m5pix3S3_fBYrzpiIfwBsHnlP</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Yuan, Huawei</creator><creator>Li, Sinan</creator><creator>Tan, Siew-Chong</creator><creator>Hui, Ron Shu-Yuen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0575-1159</orcidid><orcidid>https://orcid.org/0000-0001-9007-8749</orcidid><orcidid>https://orcid.org/0000-0002-5992-6559</orcidid><orcidid>https://orcid.org/0000-0001-9519-2321</orcidid></search><sort><creationdate>20211001</creationdate><title>Simplified Algebraic Estimation Technique for Sensor Count Reduction in Single-Phase Converters With an Active Power Buffer</title><author>Yuan, Huawei ; Li, Sinan ; Tan, Siew-Chong ; Hui, Ron Shu-Yuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-423c9ff2d8f0f771765ea26a1eee7008907ebe6cf880070ee6a6b7b78c8ef8263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algebraic estimation</topic><topic>Buffers</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Computing time</topic><topic>Converters</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Estimation</topic><topic>low computational cost</topic><topic>Microcontrollers</topic><topic>New technology</topic><topic>Noise sensitivity</topic><topic>Observers</topic><topic>power decoupling</topic><topic>pulsating power buffer</topic><topic>Rectifiers</topic><topic>Reliability</topic><topic>sensor reduction</topic><topic>Sensors</topic><topic>single-phase converters</topic><topic>System effectiveness</topic><topic>Topology</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Huawei</creatorcontrib><creatorcontrib>Li, Sinan</creatorcontrib><creatorcontrib>Tan, Siew-Chong</creatorcontrib><creatorcontrib>Hui, Ron Shu-Yuen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuan, Huawei</au><au>Li, Sinan</au><au>Tan, Siew-Chong</au><au>Hui, Ron Shu-Yuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplified Algebraic Estimation Technique for Sensor Count Reduction in Single-Phase Converters With an Active Power Buffer</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>36</volume><issue>10</issue><spage>11444</spage><epage>11455</epage><pages>11444-11455</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Active pulsating power buffering (APPB) is an emerging technology that can effectively minimize the energy storage requirement of single-phase power conversion systems, potentially leading to high density and high reliability design. Nonetheless, the implementation of APPB generally requires the addition of excessive number of sensors in the circuit. Employing many sensors not only increases the system's volume and cost, but also undermines the system's robustness. Existing methods of reducing the sensor count in single-phase converters with an APPB suffer from issues such as high design complexity, noise sensitivity, and/or computational complexity. In this article, a simplified algebraic estimation technique is proposed to tackle the high sensor count problem. The proposed technique is intuitive to design and applicable to different topologies. It can effectively reduce the number of sensors while yielding similar or even better system's performance than that with a full set of sensors. Moreover, the technique features very low computational complexity, and can thus be easily implemented by low-cost microcontrollers. Experiments are conducted to verify the feasibilities of the proposed estimation and sensor reduction method. With this method, the sensor count can be reduced by 50%, while achieving a nearly 20-times computational time reduction as compared to that of the conventional method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3067620</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0575-1159</orcidid><orcidid>https://orcid.org/0000-0001-9007-8749</orcidid><orcidid>https://orcid.org/0000-0002-5992-6559</orcidid><orcidid>https://orcid.org/0000-0001-9519-2321</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2021-10, Vol.36 (10), p.11444-11455
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2021_3067620
source IEEE Electronic Library (IEL)
subjects Algebra
Algebraic estimation
Buffers
Circuits
Complexity
Computational complexity
Computing time
Converters
Energy conversion
Energy storage
Estimation
low computational cost
Microcontrollers
New technology
Noise sensitivity
Observers
power decoupling
pulsating power buffer
Rectifiers
Reliability
sensor reduction
Sensors
single-phase converters
System effectiveness
Topology
Voltage control
title Simplified Algebraic Estimation Technique for Sensor Count Reduction in Single-Phase Converters With an Active Power Buffer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplified%20Algebraic%20Estimation%20Technique%20for%20Sensor%20Count%20Reduction%20in%20Single-Phase%20Converters%20With%20an%20Active%20Power%20Buffer&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yuan,%20Huawei&rft.date=2021-10-01&rft.volume=36&rft.issue=10&rft.spage=11444&rft.epage=11455&rft.pages=11444-11455&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3067620&rft_dat=%3Cproquest_RIE%3E2547642666%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547642666&rft_id=info:pmid/&rft_ieee_id=9382116&rfr_iscdi=true