Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints

This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conducti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2021-03, Vol.36 (3), p.3111-3125
Hauptverfasser: McLaughlin, Prescott H., Rentmeister, Jan S., Kiani, M. Hassan, Stauth, Jason T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3125
container_issue 3
container_start_page 3111
container_title IEEE transactions on power electronics
container_volume 36
creator McLaughlin, Prescott H.
Rentmeister, Jan S.
Kiani, M. Hassan
Stauth, Jason T.
description This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conduction- and frequency-dependent losses in active semiconductor devices and losses related to passive components as they scale with size and relative voltage rating. Similar to past work on pure SC converters, the method leverages a charge-multiplier approach and is used to show the impact of area or volume constraints on inductors and capacitors. Building on past work, considerations for treating both "direct-" and "indirect-" conversion architectures are provided, as well as treatment of converters that require multiple inductors. Common topologies are compared using the generalized FOM under different scaling scenarios; general trends are validated using an experimental prototype.
doi_str_mv 10.1109/TPEL.2020.3017123
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2020_3017123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9169845</ieee_id><sourcerecordid>2456528408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b660eea96b86b7024265ec6bc6301d78975387bede533da003e0f5990e25aa933</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-Jx50zRp8jg6dcLAoRMfS9resoytnUk2mb_e1g2fLgfOd-B-hNwyGDEG-mExf5yNYohhxIGlLOZnZMB0wigwSM_JAJQSVGnNL8mV9ysAlghgA7IfN2Z98NZHpqmirN1sjbO-baK2jqaHwtmKvmGXTROi928byiVWNDNbU9rQumiS0UnWYc0eXUDno08bltHceG_3-DfXNtij9qePjQ_O2Cb4a3JRm7XHm9Mdko-nx0U2pbPX55dsPKMl5zLQQkpANFoWShYpxEksBZayKGX3ZZUqnQqu0gIrFJxXBoAj1EJrwFgYozkfkvvj7ta1Xzv0IV-1O9e97PM4EVLEKgHVtdixVbrWe4d1vnV2Y9whZ5D3evNeb97rzU96O-buyFhE_O9rJrVKBP8FIn52zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456528408</pqid></control><display><type>article</type><title>Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>McLaughlin, Prescott H. ; Rentmeister, Jan S. ; Kiani, M. Hassan ; Stauth, Jason T.</creator><creatorcontrib>McLaughlin, Prescott H. ; Rentmeister, Jan S. ; Kiani, M. Hassan ; Stauth, Jason T.</creatorcontrib><description>This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conduction- and frequency-dependent losses in active semiconductor devices and losses related to passive components as they scale with size and relative voltage rating. Similar to past work on pure SC converters, the method leverages a charge-multiplier approach and is used to show the impact of area or volume constraints on inductors and capacitors. Building on past work, considerations for treating both "direct-" and "indirect-" conversion architectures are provided, as well as treatment of converters that require multiple inductors. Common topologies are compared using the generalized FOM under different scaling scenarios; general trends are validated using an experimental prototype.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.3017123</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Converters ; DC–DC power conversion ; Figure of merit ; Inductors ; Magnetic resonance ; Magnetic switching ; Network topology ; Passive components ; Semiconductor devices ; switched-capacitor circuits ; Switches ; Topology</subject><ispartof>IEEE transactions on power electronics, 2021-03, Vol.36 (3), p.3111-3125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b660eea96b86b7024265ec6bc6301d78975387bede533da003e0f5990e25aa933</citedby><cites>FETCH-LOGICAL-c336t-b660eea96b86b7024265ec6bc6301d78975387bede533da003e0f5990e25aa933</cites><orcidid>0000-0003-0259-7368 ; 0000-0002-4943-3275 ; 0000-0001-8917-5023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9169845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9169845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McLaughlin, Prescott H.</creatorcontrib><creatorcontrib>Rentmeister, Jan S.</creatorcontrib><creatorcontrib>Kiani, M. Hassan</creatorcontrib><creatorcontrib>Stauth, Jason T.</creatorcontrib><title>Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conduction- and frequency-dependent losses in active semiconductor devices and losses related to passive components as they scale with size and relative voltage rating. Similar to past work on pure SC converters, the method leverages a charge-multiplier approach and is used to show the impact of area or volume constraints on inductors and capacitors. Building on past work, considerations for treating both "direct-" and "indirect-" conversion architectures are provided, as well as treatment of converters that require multiple inductors. Common topologies are compared using the generalized FOM under different scaling scenarios; general trends are validated using an experimental prototype.</description><subject>Capacitors</subject><subject>Converters</subject><subject>DC–DC power conversion</subject><subject>Figure of merit</subject><subject>Inductors</subject><subject>Magnetic resonance</subject><subject>Magnetic switching</subject><subject>Network topology</subject><subject>Passive components</subject><subject>Semiconductor devices</subject><subject>switched-capacitor circuits</subject><subject>Switches</subject><subject>Topology</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-Jx50zRp8jg6dcLAoRMfS9resoytnUk2mb_e1g2fLgfOd-B-hNwyGDEG-mExf5yNYohhxIGlLOZnZMB0wigwSM_JAJQSVGnNL8mV9ysAlghgA7IfN2Z98NZHpqmirN1sjbO-baK2jqaHwtmKvmGXTROi928byiVWNDNbU9rQumiS0UnWYc0eXUDno08bltHceG_3-DfXNtij9qePjQ_O2Cb4a3JRm7XHm9Mdko-nx0U2pbPX55dsPKMl5zLQQkpANFoWShYpxEksBZayKGX3ZZUqnQqu0gIrFJxXBoAj1EJrwFgYozkfkvvj7ta1Xzv0IV-1O9e97PM4EVLEKgHVtdixVbrWe4d1vnV2Y9whZ5D3evNeb97rzU96O-buyFhE_O9rJrVKBP8FIn52zg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>McLaughlin, Prescott H.</creator><creator>Rentmeister, Jan S.</creator><creator>Kiani, M. Hassan</creator><creator>Stauth, Jason T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0259-7368</orcidid><orcidid>https://orcid.org/0000-0002-4943-3275</orcidid><orcidid>https://orcid.org/0000-0001-8917-5023</orcidid></search><sort><creationdate>20210301</creationdate><title>Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints</title><author>McLaughlin, Prescott H. ; Rentmeister, Jan S. ; Kiani, M. Hassan ; Stauth, Jason T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b660eea96b86b7024265ec6bc6301d78975387bede533da003e0f5990e25aa933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitors</topic><topic>Converters</topic><topic>DC–DC power conversion</topic><topic>Figure of merit</topic><topic>Inductors</topic><topic>Magnetic resonance</topic><topic>Magnetic switching</topic><topic>Network topology</topic><topic>Passive components</topic><topic>Semiconductor devices</topic><topic>switched-capacitor circuits</topic><topic>Switches</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLaughlin, Prescott H.</creatorcontrib><creatorcontrib>Rentmeister, Jan S.</creatorcontrib><creatorcontrib>Kiani, M. Hassan</creatorcontrib><creatorcontrib>Stauth, Jason T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McLaughlin, Prescott H.</au><au>Rentmeister, Jan S.</au><au>Kiani, M. Hassan</au><au>Stauth, Jason T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>3111</spage><epage>3125</epage><pages>3111-3125</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conduction- and frequency-dependent losses in active semiconductor devices and losses related to passive components as they scale with size and relative voltage rating. Similar to past work on pure SC converters, the method leverages a charge-multiplier approach and is used to show the impact of area or volume constraints on inductors and capacitors. Building on past work, considerations for treating both "direct-" and "indirect-" conversion architectures are provided, as well as treatment of converters that require multiple inductors. Common topologies are compared using the generalized FOM under different scaling scenarios; general trends are validated using an experimental prototype.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.3017123</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0259-7368</orcidid><orcidid>https://orcid.org/0000-0002-4943-3275</orcidid><orcidid>https://orcid.org/0000-0001-8917-5023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2021-03, Vol.36 (3), p.3111-3125
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2020_3017123
source IEEE Electronic Library (IEL)
subjects Capacitors
Converters
DC–DC power conversion
Figure of merit
Inductors
Magnetic resonance
Magnetic switching
Network topology
Passive components
Semiconductor devices
switched-capacitor circuits
Switches
Topology
title Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Comparison%20of%20Hybrid-Resonant%20Switched-Capacitor%20DC-DC%20Converters%20With%20Passive%20Component%20Size%20Constraints&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=McLaughlin,%20Prescott%20H.&rft.date=2021-03-01&rft.volume=36&rft.issue=3&rft.spage=3111&rft.epage=3125&rft.pages=3111-3125&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.3017123&rft_dat=%3Cproquest_RIE%3E2456528408%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456528408&rft_id=info:pmid/&rft_ieee_id=9169845&rfr_iscdi=true