Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints
This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conducti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2021-03, Vol.36 (3), p.3111-3125 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3125 |
---|---|
container_issue | 3 |
container_start_page | 3111 |
container_title | IEEE transactions on power electronics |
container_volume | 36 |
creator | McLaughlin, Prescott H. Rentmeister, Jan S. Kiani, M. Hassan Stauth, Jason T. |
description | This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conduction- and frequency-dependent losses in active semiconductor devices and losses related to passive components as they scale with size and relative voltage rating. Similar to past work on pure SC converters, the method leverages a charge-multiplier approach and is used to show the impact of area or volume constraints on inductors and capacitors. Building on past work, considerations for treating both "direct-" and "indirect-" conversion architectures are provided, as well as treatment of converters that require multiple inductors. Common topologies are compared using the generalized FOM under different scaling scenarios; general trends are validated using an experimental prototype. |
doi_str_mv | 10.1109/TPEL.2020.3017123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2020_3017123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9169845</ieee_id><sourcerecordid>2456528408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b660eea96b86b7024265ec6bc6301d78975387bede533da003e0f5990e25aa933</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-Jx50zRp8jg6dcLAoRMfS9resoytnUk2mb_e1g2fLgfOd-B-hNwyGDEG-mExf5yNYohhxIGlLOZnZMB0wigwSM_JAJQSVGnNL8mV9ysAlghgA7IfN2Z98NZHpqmirN1sjbO-baK2jqaHwtmKvmGXTROi928byiVWNDNbU9rQumiS0UnWYc0eXUDno08bltHceG_3-DfXNtij9qePjQ_O2Cb4a3JRm7XHm9Mdko-nx0U2pbPX55dsPKMl5zLQQkpANFoWShYpxEksBZayKGX3ZZUqnQqu0gIrFJxXBoAj1EJrwFgYozkfkvvj7ta1Xzv0IV-1O9e97PM4EVLEKgHVtdixVbrWe4d1vnV2Y9whZ5D3evNeb97rzU96O-buyFhE_O9rJrVKBP8FIn52zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456528408</pqid></control><display><type>article</type><title>Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>McLaughlin, Prescott H. ; Rentmeister, Jan S. ; Kiani, M. Hassan ; Stauth, Jason T.</creator><creatorcontrib>McLaughlin, Prescott H. ; Rentmeister, Jan S. ; Kiani, M. Hassan ; Stauth, Jason T.</creatorcontrib><description>This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conduction- and frequency-dependent losses in active semiconductor devices and losses related to passive components as they scale with size and relative voltage rating. Similar to past work on pure SC converters, the method leverages a charge-multiplier approach and is used to show the impact of area or volume constraints on inductors and capacitors. Building on past work, considerations for treating both "direct-" and "indirect-" conversion architectures are provided, as well as treatment of converters that require multiple inductors. Common topologies are compared using the generalized FOM under different scaling scenarios; general trends are validated using an experimental prototype.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.3017123</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Converters ; DC–DC power conversion ; Figure of merit ; Inductors ; Magnetic resonance ; Magnetic switching ; Network topology ; Passive components ; Semiconductor devices ; switched-capacitor circuits ; Switches ; Topology</subject><ispartof>IEEE transactions on power electronics, 2021-03, Vol.36 (3), p.3111-3125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b660eea96b86b7024265ec6bc6301d78975387bede533da003e0f5990e25aa933</citedby><cites>FETCH-LOGICAL-c336t-b660eea96b86b7024265ec6bc6301d78975387bede533da003e0f5990e25aa933</cites><orcidid>0000-0003-0259-7368 ; 0000-0002-4943-3275 ; 0000-0001-8917-5023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9169845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9169845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McLaughlin, Prescott H.</creatorcontrib><creatorcontrib>Rentmeister, Jan S.</creatorcontrib><creatorcontrib>Kiani, M. Hassan</creatorcontrib><creatorcontrib>Stauth, Jason T.</creatorcontrib><title>Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conduction- and frequency-dependent losses in active semiconductor devices and losses related to passive components as they scale with size and relative voltage rating. Similar to past work on pure SC converters, the method leverages a charge-multiplier approach and is used to show the impact of area or volume constraints on inductors and capacitors. Building on past work, considerations for treating both "direct-" and "indirect-" conversion architectures are provided, as well as treatment of converters that require multiple inductors. Common topologies are compared using the generalized FOM under different scaling scenarios; general trends are validated using an experimental prototype.</description><subject>Capacitors</subject><subject>Converters</subject><subject>DC–DC power conversion</subject><subject>Figure of merit</subject><subject>Inductors</subject><subject>Magnetic resonance</subject><subject>Magnetic switching</subject><subject>Network topology</subject><subject>Passive components</subject><subject>Semiconductor devices</subject><subject>switched-capacitor circuits</subject><subject>Switches</subject><subject>Topology</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-Jx50zRp8jg6dcLAoRMfS9resoytnUk2mb_e1g2fLgfOd-B-hNwyGDEG-mExf5yNYohhxIGlLOZnZMB0wigwSM_JAJQSVGnNL8mV9ysAlghgA7IfN2Z98NZHpqmirN1sjbO-baK2jqaHwtmKvmGXTROi928byiVWNDNbU9rQumiS0UnWYc0eXUDno08bltHceG_3-DfXNtij9qePjQ_O2Cb4a3JRm7XHm9Mdko-nx0U2pbPX55dsPKMl5zLQQkpANFoWShYpxEksBZayKGX3ZZUqnQqu0gIrFJxXBoAj1EJrwFgYozkfkvvj7ta1Xzv0IV-1O9e97PM4EVLEKgHVtdixVbrWe4d1vnV2Y9whZ5D3evNeb97rzU96O-buyFhE_O9rJrVKBP8FIn52zg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>McLaughlin, Prescott H.</creator><creator>Rentmeister, Jan S.</creator><creator>Kiani, M. Hassan</creator><creator>Stauth, Jason T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0259-7368</orcidid><orcidid>https://orcid.org/0000-0002-4943-3275</orcidid><orcidid>https://orcid.org/0000-0001-8917-5023</orcidid></search><sort><creationdate>20210301</creationdate><title>Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints</title><author>McLaughlin, Prescott H. ; Rentmeister, Jan S. ; Kiani, M. Hassan ; Stauth, Jason T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b660eea96b86b7024265ec6bc6301d78975387bede533da003e0f5990e25aa933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitors</topic><topic>Converters</topic><topic>DC–DC power conversion</topic><topic>Figure of merit</topic><topic>Inductors</topic><topic>Magnetic resonance</topic><topic>Magnetic switching</topic><topic>Network topology</topic><topic>Passive components</topic><topic>Semiconductor devices</topic><topic>switched-capacitor circuits</topic><topic>Switches</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLaughlin, Prescott H.</creatorcontrib><creatorcontrib>Rentmeister, Jan S.</creatorcontrib><creatorcontrib>Kiani, M. Hassan</creatorcontrib><creatorcontrib>Stauth, Jason T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McLaughlin, Prescott H.</au><au>Rentmeister, Jan S.</au><au>Kiani, M. Hassan</au><au>Stauth, Jason T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>3111</spage><epage>3125</epage><pages>3111-3125</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This article explores the merits of a variety of hybrid-resonant switched-capacitor (SC) dc-dc converters under strict size constraints on passive components (flying capacitors and inductors). Topologies are compared using a "minimum power loss" figure of merit (FOM) that captures conduction- and frequency-dependent losses in active semiconductor devices and losses related to passive components as they scale with size and relative voltage rating. Similar to past work on pure SC converters, the method leverages a charge-multiplier approach and is used to show the impact of area or volume constraints on inductors and capacitors. Building on past work, considerations for treating both "direct-" and "indirect-" conversion architectures are provided, as well as treatment of converters that require multiple inductors. Common topologies are compared using the generalized FOM under different scaling scenarios; general trends are validated using an experimental prototype.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.3017123</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0259-7368</orcidid><orcidid>https://orcid.org/0000-0002-4943-3275</orcidid><orcidid>https://orcid.org/0000-0001-8917-5023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2021-03, Vol.36 (3), p.3111-3125 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2020_3017123 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitors Converters DC–DC power conversion Figure of merit Inductors Magnetic resonance Magnetic switching Network topology Passive components Semiconductor devices switched-capacitor circuits Switches Topology |
title | Analysis and Comparison of Hybrid-Resonant Switched-Capacitor DC-DC Converters With Passive Component Size Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Comparison%20of%20Hybrid-Resonant%20Switched-Capacitor%20DC-DC%20Converters%20With%20Passive%20Component%20Size%20Constraints&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=McLaughlin,%20Prescott%20H.&rft.date=2021-03-01&rft.volume=36&rft.issue=3&rft.spage=3111&rft.epage=3125&rft.pages=3111-3125&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.3017123&rft_dat=%3Cproquest_RIE%3E2456528408%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456528408&rft_id=info:pmid/&rft_ieee_id=9169845&rfr_iscdi=true |