Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges
Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power lo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2019-02, Vol.34 (2), p.1382-1393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 2 |
container_start_page | 1382 |
container_title | IEEE transactions on power electronics |
container_volume | 34 |
creator | Sun, Bingyao Burgos, Rolando Boroyevich, Dushan |
description | Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power loop and ancillary circuitry. In effect, the parasitic isolation capacitance C_{i} of the gate-driver power supply represents a key EMI propagation path to be controlled in order to ensure the operational integrity of power converters. To this end, this paper proposes an integrated, dual-output gate-drive power supply for gallium-nitride (GaN) 650 V, 60 A, half-bridge phase legs, rated at 2 W (2 × 1 W), 15 to 2 × 7 V, featuring an ultralow C_{i} of 1.6 pF, an output-to-output parasitic capacitance of 1.6 pF, a power density of 72 W/in 3 , and an efficiency of 85%. All this is attained using an active-clamp flyback converter switching at 1 MHz using 65 V GaN high-electron-mobility transistor devices and Schottky output rectifiers, and a Pareto-optimized transformer design minimizing its interwinding capacitances, volume, and losses. Finally, the transformer is fully embedded in a printed circuit board (PCB) material, doubling as a substrate for the topside active layer of the power supply. The paper presents the complete design procedure, processing, and experimental demonstration of the proposed integrated power supply, evaluating as well the reliability impact of the magnetic-PCB material interface in high ambient temperature applications (>200 °C). |
doi_str_mv | 10.1109/TPEL.2018.2828384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2018_2828384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8340881</ieee_id><sourcerecordid>2159397344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b9211faa3befc9ac513d1a429d5af5d71f7bad0dc9abc1289362012375417ae03</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AOPLEp-LvevK2kcZCCRESARfl7u1MyODzXaT8O8tAX06D_c75yYfIY_ABgBMvaxXk8UgZCAHoQwll9EV6YGKgDJg8TXpMSkFlUrxW3Ln3JYxiASDHnGbqrVY1Ydgvm-6li671keQYIN52eI-N8EqGdHJLjNaGx2MO6z-oCm2ho5t-eOZ-mBs8NE1TXUMitoGQ8GCT0-80xE635thVdCRLfWXcffkpsDKmYdL9snmbbJOZnSxnM6T1wXNuVAtzVQIUCDyzBS5wlwA14BRqLTAQugYijhDzbS_ZTmEUvGhFxDyWEQQo2G8T57Pu42tvzvj2nRbd3bvX6YhCMVVzKPIU3Cmcls7Z02RNrbcoT2mwNKT2_TkNj25TS9ufefp3CmNMf-85JHXDPwXF8N0aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159397344</pqid></control><display><type>article</type><title>Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Bingyao ; Burgos, Rolando ; Boroyevich, Dushan</creator><creatorcontrib>Sun, Bingyao ; Burgos, Rolando ; Boroyevich, Dushan</creatorcontrib><description><![CDATA[Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power loop and ancillary circuitry. In effect, the parasitic isolation capacitance <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of the gate-driver power supply represents a key EMI propagation path to be controlled in order to ensure the operational integrity of power converters. To this end, this paper proposes an integrated, dual-output gate-drive power supply for gallium-nitride (GaN) 650 V, 60 A, half-bridge phase legs, rated at 2 W (2 × 1 W), 15 to 2 × 7 V, featuring an ultralow <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of 1.6 pF, an output-to-output parasitic capacitance of 1.6 pF, a power density of 72 W/in 3 , and an efficiency of 85%. All this is attained using an active-clamp flyback converter switching at 1 MHz using 65 V GaN high-electron-mobility transistor devices and Schottky output rectifiers, and a Pareto-optimized transformer design minimizing its interwinding capacitances, volume, and losses. Finally, the transformer is fully embedded in a printed circuit board (PCB) material, doubling as a substrate for the topside active layer of the power supply. The paper presents the complete design procedure, processing, and experimental demonstration of the proposed integrated power supply, evaluating as well the reliability impact of the magnetic-PCB material interface in high ambient temperature applications (>200 °C).]]></description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2018.2828384</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ambient temperature ; Capacitance ; Capacitance bridges ; Circuit boards ; Circuits ; Density measurement ; Design optimization ; Electromagnetic interference ; Electronics ; Energy conversion efficiency ; gallium nitride (GaN) ; Gallium nitrides ; Gate drive ; Gate drivers ; isolation capacitor ; Logic gates ; Pareto optimization ; Power converters ; Power supplies ; Power supply ; Power system measurements ; Printed circuits ; printed-circuit-board (PCB)-embedded ; Rectifiers ; Reliability analysis ; Substrates ; Switching ; Transformers</subject><ispartof>IEEE transactions on power electronics, 2019-02, Vol.34 (2), p.1382-1393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b9211faa3befc9ac513d1a429d5af5d71f7bad0dc9abc1289362012375417ae03</citedby><cites>FETCH-LOGICAL-c359t-b9211faa3befc9ac513d1a429d5af5d71f7bad0dc9abc1289362012375417ae03</cites><orcidid>0000-0003-0570-2768 ; 0000-0002-5697-6630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8340881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8340881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Bingyao</creatorcontrib><creatorcontrib>Burgos, Rolando</creatorcontrib><creatorcontrib>Boroyevich, Dushan</creatorcontrib><title>Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description><![CDATA[Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power loop and ancillary circuitry. In effect, the parasitic isolation capacitance <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of the gate-driver power supply represents a key EMI propagation path to be controlled in order to ensure the operational integrity of power converters. To this end, this paper proposes an integrated, dual-output gate-drive power supply for gallium-nitride (GaN) 650 V, 60 A, half-bridge phase legs, rated at 2 W (2 × 1 W), 15 to 2 × 7 V, featuring an ultralow <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of 1.6 pF, an output-to-output parasitic capacitance of 1.6 pF, a power density of 72 W/in 3 , and an efficiency of 85%. All this is attained using an active-clamp flyback converter switching at 1 MHz using 65 V GaN high-electron-mobility transistor devices and Schottky output rectifiers, and a Pareto-optimized transformer design minimizing its interwinding capacitances, volume, and losses. Finally, the transformer is fully embedded in a printed circuit board (PCB) material, doubling as a substrate for the topside active layer of the power supply. The paper presents the complete design procedure, processing, and experimental demonstration of the proposed integrated power supply, evaluating as well the reliability impact of the magnetic-PCB material interface in high ambient temperature applications (>200 °C).]]></description><subject>Ambient temperature</subject><subject>Capacitance</subject><subject>Capacitance bridges</subject><subject>Circuit boards</subject><subject>Circuits</subject><subject>Density measurement</subject><subject>Design optimization</subject><subject>Electromagnetic interference</subject><subject>Electronics</subject><subject>Energy conversion efficiency</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>Gate drive</subject><subject>Gate drivers</subject><subject>isolation capacitor</subject><subject>Logic gates</subject><subject>Pareto optimization</subject><subject>Power converters</subject><subject>Power supplies</subject><subject>Power supply</subject><subject>Power system measurements</subject><subject>Printed circuits</subject><subject>printed-circuit-board (PCB)-embedded</subject><subject>Rectifiers</subject><subject>Reliability analysis</subject><subject>Substrates</subject><subject>Switching</subject><subject>Transformers</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AOPLEp-LvevK2kcZCCRESARfl7u1MyODzXaT8O8tAX06D_c75yYfIY_ABgBMvaxXk8UgZCAHoQwll9EV6YGKgDJg8TXpMSkFlUrxW3Ln3JYxiASDHnGbqrVY1Ydgvm-6li671keQYIN52eI-N8EqGdHJLjNaGx2MO6z-oCm2ho5t-eOZ-mBs8NE1TXUMitoGQ8GCT0-80xE635thVdCRLfWXcffkpsDKmYdL9snmbbJOZnSxnM6T1wXNuVAtzVQIUCDyzBS5wlwA14BRqLTAQugYijhDzbS_ZTmEUvGhFxDyWEQQo2G8T57Pu42tvzvj2nRbd3bvX6YhCMVVzKPIU3Cmcls7Z02RNrbcoT2mwNKT2_TkNj25TS9ufefp3CmNMf-85JHXDPwXF8N0aw</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Sun, Bingyao</creator><creator>Burgos, Rolando</creator><creator>Boroyevich, Dushan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0570-2768</orcidid><orcidid>https://orcid.org/0000-0002-5697-6630</orcidid></search><sort><creationdate>20190201</creationdate><title>Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges</title><author>Sun, Bingyao ; Burgos, Rolando ; Boroyevich, Dushan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b9211faa3befc9ac513d1a429d5af5d71f7bad0dc9abc1289362012375417ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ambient temperature</topic><topic>Capacitance</topic><topic>Capacitance bridges</topic><topic>Circuit boards</topic><topic>Circuits</topic><topic>Density measurement</topic><topic>Design optimization</topic><topic>Electromagnetic interference</topic><topic>Electronics</topic><topic>Energy conversion efficiency</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>Gate drive</topic><topic>Gate drivers</topic><topic>isolation capacitor</topic><topic>Logic gates</topic><topic>Pareto optimization</topic><topic>Power converters</topic><topic>Power supplies</topic><topic>Power supply</topic><topic>Power system measurements</topic><topic>Printed circuits</topic><topic>printed-circuit-board (PCB)-embedded</topic><topic>Rectifiers</topic><topic>Reliability analysis</topic><topic>Substrates</topic><topic>Switching</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Bingyao</creatorcontrib><creatorcontrib>Burgos, Rolando</creatorcontrib><creatorcontrib>Boroyevich, Dushan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Bingyao</au><au>Burgos, Rolando</au><au>Boroyevich, Dushan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>1382</spage><epage>1393</epage><pages>1382-1393</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract><![CDATA[Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power loop and ancillary circuitry. In effect, the parasitic isolation capacitance <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of the gate-driver power supply represents a key EMI propagation path to be controlled in order to ensure the operational integrity of power converters. To this end, this paper proposes an integrated, dual-output gate-drive power supply for gallium-nitride (GaN) 650 V, 60 A, half-bridge phase legs, rated at 2 W (2 × 1 W), 15 to 2 × 7 V, featuring an ultralow <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of 1.6 pF, an output-to-output parasitic capacitance of 1.6 pF, a power density of 72 W/in 3 , and an efficiency of 85%. All this is attained using an active-clamp flyback converter switching at 1 MHz using 65 V GaN high-electron-mobility transistor devices and Schottky output rectifiers, and a Pareto-optimized transformer design minimizing its interwinding capacitances, volume, and losses. Finally, the transformer is fully embedded in a printed circuit board (PCB) material, doubling as a substrate for the topside active layer of the power supply. The paper presents the complete design procedure, processing, and experimental demonstration of the proposed integrated power supply, evaluating as well the reliability impact of the magnetic-PCB material interface in high ambient temperature applications (>200 °C).]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2018.2828384</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0570-2768</orcidid><orcidid>https://orcid.org/0000-0002-5697-6630</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2019-02, Vol.34 (2), p.1382-1393 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2018_2828384 |
source | IEEE Electronic Library (IEL) |
subjects | Ambient temperature Capacitance Capacitance bridges Circuit boards Circuits Density measurement Design optimization Electromagnetic interference Electronics Energy conversion efficiency gallium nitride (GaN) Gallium nitrides Gate drive Gate drivers isolation capacitor Logic gates Pareto optimization Power converters Power supplies Power supply Power system measurements Printed circuits printed-circuit-board (PCB)-embedded Rectifiers Reliability analysis Substrates Switching Transformers |
title | Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20Input-Output%20Capacitance%20PCB-Embedded%20Dual-Output%20Gate-Drive%20Power%20Supply%20for%20650%20V%20GaN-Based%20Half-Bridges&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Sun,%20Bingyao&rft.date=2019-02-01&rft.volume=34&rft.issue=2&rft.spage=1382&rft.epage=1393&rft.pages=1382-1393&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2018.2828384&rft_dat=%3Cproquest_RIE%3E2159397344%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159397344&rft_id=info:pmid/&rft_ieee_id=8340881&rfr_iscdi=true |