Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges

Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2019-02, Vol.34 (2), p.1382-1393
Hauptverfasser: Sun, Bingyao, Burgos, Rolando, Boroyevich, Dushan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1393
container_issue 2
container_start_page 1382
container_title IEEE transactions on power electronics
container_volume 34
creator Sun, Bingyao
Burgos, Rolando
Boroyevich, Dushan
description Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power loop and ancillary circuitry. In effect, the parasitic isolation capacitance C_{i} of the gate-driver power supply represents a key EMI propagation path to be controlled in order to ensure the operational integrity of power converters. To this end, this paper proposes an integrated, dual-output gate-drive power supply for gallium-nitride (GaN) 650 V, 60 A, half-bridge phase legs, rated at 2 W (2 × 1 W), 15 to 2 × 7 V, featuring an ultralow C_{i} of 1.6 pF, an output-to-output parasitic capacitance of 1.6 pF, a power density of 72 W/in 3 , and an efficiency of 85%. All this is attained using an active-clamp flyback converter switching at 1 MHz using 65 V GaN high-electron-mobility transistor devices and Schottky output rectifiers, and a Pareto-optimized transformer design minimizing its interwinding capacitances, volume, and losses. Finally, the transformer is fully embedded in a printed circuit board (PCB) material, doubling as a substrate for the topside active layer of the power supply. The paper presents the complete design procedure, processing, and experimental demonstration of the proposed integrated power supply, evaluating as well the reliability impact of the magnetic-PCB material interface in high ambient temperature applications (>200 °C).
doi_str_mv 10.1109/TPEL.2018.2828384
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2018_2828384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8340881</ieee_id><sourcerecordid>2159397344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b9211faa3befc9ac513d1a429d5af5d71f7bad0dc9abc1289362012375417ae03</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AOPLEp-LvevK2kcZCCRESARfl7u1MyODzXaT8O8tAX06D_c75yYfIY_ABgBMvaxXk8UgZCAHoQwll9EV6YGKgDJg8TXpMSkFlUrxW3Ln3JYxiASDHnGbqrVY1Ydgvm-6li671keQYIN52eI-N8EqGdHJLjNaGx2MO6z-oCm2ho5t-eOZ-mBs8NE1TXUMitoGQ8GCT0-80xE635thVdCRLfWXcffkpsDKmYdL9snmbbJOZnSxnM6T1wXNuVAtzVQIUCDyzBS5wlwA14BRqLTAQugYijhDzbS_ZTmEUvGhFxDyWEQQo2G8T57Pu42tvzvj2nRbd3bvX6YhCMVVzKPIU3Cmcls7Z02RNrbcoT2mwNKT2_TkNj25TS9ufefp3CmNMf-85JHXDPwXF8N0aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159397344</pqid></control><display><type>article</type><title>Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Bingyao ; Burgos, Rolando ; Boroyevich, Dushan</creator><creatorcontrib>Sun, Bingyao ; Burgos, Rolando ; Boroyevich, Dushan</creatorcontrib><description><![CDATA[Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power loop and ancillary circuitry. In effect, the parasitic isolation capacitance <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of the gate-driver power supply represents a key EMI propagation path to be controlled in order to ensure the operational integrity of power converters. To this end, this paper proposes an integrated, dual-output gate-drive power supply for gallium-nitride (GaN) 650 V, 60 A, half-bridge phase legs, rated at 2 W (2 × 1 W), 15 to 2 × 7 V, featuring an ultralow <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of 1.6 pF, an output-to-output parasitic capacitance of 1.6 pF, a power density of 72 W/in 3 , and an efficiency of 85%. All this is attained using an active-clamp flyback converter switching at 1 MHz using 65 V GaN high-electron-mobility transistor devices and Schottky output rectifiers, and a Pareto-optimized transformer design minimizing its interwinding capacitances, volume, and losses. Finally, the transformer is fully embedded in a printed circuit board (PCB) material, doubling as a substrate for the topside active layer of the power supply. The paper presents the complete design procedure, processing, and experimental demonstration of the proposed integrated power supply, evaluating as well the reliability impact of the magnetic-PCB material interface in high ambient temperature applications (>200 °C).]]></description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2018.2828384</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ambient temperature ; Capacitance ; Capacitance bridges ; Circuit boards ; Circuits ; Density measurement ; Design optimization ; Electromagnetic interference ; Electronics ; Energy conversion efficiency ; gallium nitride (GaN) ; Gallium nitrides ; Gate drive ; Gate drivers ; isolation capacitor ; Logic gates ; Pareto optimization ; Power converters ; Power supplies ; Power supply ; Power system measurements ; Printed circuits ; printed-circuit-board (PCB)-embedded ; Rectifiers ; Reliability analysis ; Substrates ; Switching ; Transformers</subject><ispartof>IEEE transactions on power electronics, 2019-02, Vol.34 (2), p.1382-1393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b9211faa3befc9ac513d1a429d5af5d71f7bad0dc9abc1289362012375417ae03</citedby><cites>FETCH-LOGICAL-c359t-b9211faa3befc9ac513d1a429d5af5d71f7bad0dc9abc1289362012375417ae03</cites><orcidid>0000-0003-0570-2768 ; 0000-0002-5697-6630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8340881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8340881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Bingyao</creatorcontrib><creatorcontrib>Burgos, Rolando</creatorcontrib><creatorcontrib>Boroyevich, Dushan</creatorcontrib><title>Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description><![CDATA[Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power loop and ancillary circuitry. In effect, the parasitic isolation capacitance <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of the gate-driver power supply represents a key EMI propagation path to be controlled in order to ensure the operational integrity of power converters. To this end, this paper proposes an integrated, dual-output gate-drive power supply for gallium-nitride (GaN) 650 V, 60 A, half-bridge phase legs, rated at 2 W (2 × 1 W), 15 to 2 × 7 V, featuring an ultralow <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of 1.6 pF, an output-to-output parasitic capacitance of 1.6 pF, a power density of 72 W/in 3 , and an efficiency of 85%. All this is attained using an active-clamp flyback converter switching at 1 MHz using 65 V GaN high-electron-mobility transistor devices and Schottky output rectifiers, and a Pareto-optimized transformer design minimizing its interwinding capacitances, volume, and losses. Finally, the transformer is fully embedded in a printed circuit board (PCB) material, doubling as a substrate for the topside active layer of the power supply. The paper presents the complete design procedure, processing, and experimental demonstration of the proposed integrated power supply, evaluating as well the reliability impact of the magnetic-PCB material interface in high ambient temperature applications (>200 °C).]]></description><subject>Ambient temperature</subject><subject>Capacitance</subject><subject>Capacitance bridges</subject><subject>Circuit boards</subject><subject>Circuits</subject><subject>Density measurement</subject><subject>Design optimization</subject><subject>Electromagnetic interference</subject><subject>Electronics</subject><subject>Energy conversion efficiency</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>Gate drive</subject><subject>Gate drivers</subject><subject>isolation capacitor</subject><subject>Logic gates</subject><subject>Pareto optimization</subject><subject>Power converters</subject><subject>Power supplies</subject><subject>Power supply</subject><subject>Power system measurements</subject><subject>Printed circuits</subject><subject>printed-circuit-board (PCB)-embedded</subject><subject>Rectifiers</subject><subject>Reliability analysis</subject><subject>Substrates</subject><subject>Switching</subject><subject>Transformers</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AOPLEp-LvevK2kcZCCRESARfl7u1MyODzXaT8O8tAX06D_c75yYfIY_ABgBMvaxXk8UgZCAHoQwll9EV6YGKgDJg8TXpMSkFlUrxW3Ln3JYxiASDHnGbqrVY1Ydgvm-6li671keQYIN52eI-N8EqGdHJLjNaGx2MO6z-oCm2ho5t-eOZ-mBs8NE1TXUMitoGQ8GCT0-80xE635thVdCRLfWXcffkpsDKmYdL9snmbbJOZnSxnM6T1wXNuVAtzVQIUCDyzBS5wlwA14BRqLTAQugYijhDzbS_ZTmEUvGhFxDyWEQQo2G8T57Pu42tvzvj2nRbd3bvX6YhCMVVzKPIU3Cmcls7Z02RNrbcoT2mwNKT2_TkNj25TS9ufefp3CmNMf-85JHXDPwXF8N0aw</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Sun, Bingyao</creator><creator>Burgos, Rolando</creator><creator>Boroyevich, Dushan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0570-2768</orcidid><orcidid>https://orcid.org/0000-0002-5697-6630</orcidid></search><sort><creationdate>20190201</creationdate><title>Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges</title><author>Sun, Bingyao ; Burgos, Rolando ; Boroyevich, Dushan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b9211faa3befc9ac513d1a429d5af5d71f7bad0dc9abc1289362012375417ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ambient temperature</topic><topic>Capacitance</topic><topic>Capacitance bridges</topic><topic>Circuit boards</topic><topic>Circuits</topic><topic>Density measurement</topic><topic>Design optimization</topic><topic>Electromagnetic interference</topic><topic>Electronics</topic><topic>Energy conversion efficiency</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>Gate drive</topic><topic>Gate drivers</topic><topic>isolation capacitor</topic><topic>Logic gates</topic><topic>Pareto optimization</topic><topic>Power converters</topic><topic>Power supplies</topic><topic>Power supply</topic><topic>Power system measurements</topic><topic>Printed circuits</topic><topic>printed-circuit-board (PCB)-embedded</topic><topic>Rectifiers</topic><topic>Reliability analysis</topic><topic>Substrates</topic><topic>Switching</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Bingyao</creatorcontrib><creatorcontrib>Burgos, Rolando</creatorcontrib><creatorcontrib>Boroyevich, Dushan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Bingyao</au><au>Burgos, Rolando</au><au>Boroyevich, Dushan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>1382</spage><epage>1393</epage><pages>1382-1393</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract><![CDATA[Wide-bandgap devices have been widely used to reduce the size and increase the efficiency of power converters by operating at a high switching frequency, at the expense of heightened radiated and conducted electromagnetic inference (EMI) emissions, of which the latter circulates through the power loop and ancillary circuitry. In effect, the parasitic isolation capacitance <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of the gate-driver power supply represents a key EMI propagation path to be controlled in order to ensure the operational integrity of power converters. To this end, this paper proposes an integrated, dual-output gate-drive power supply for gallium-nitride (GaN) 650 V, 60 A, half-bridge phase legs, rated at 2 W (2 × 1 W), 15 to 2 × 7 V, featuring an ultralow <inline-formula><tex-math notation="LaTeX">C_{i}</tex-math></inline-formula> of 1.6 pF, an output-to-output parasitic capacitance of 1.6 pF, a power density of 72 W/in 3 , and an efficiency of 85%. All this is attained using an active-clamp flyback converter switching at 1 MHz using 65 V GaN high-electron-mobility transistor devices and Schottky output rectifiers, and a Pareto-optimized transformer design minimizing its interwinding capacitances, volume, and losses. Finally, the transformer is fully embedded in a printed circuit board (PCB) material, doubling as a substrate for the topside active layer of the power supply. The paper presents the complete design procedure, processing, and experimental demonstration of the proposed integrated power supply, evaluating as well the reliability impact of the magnetic-PCB material interface in high ambient temperature applications (>200 °C).]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2018.2828384</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0570-2768</orcidid><orcidid>https://orcid.org/0000-0002-5697-6630</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2019-02, Vol.34 (2), p.1382-1393
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2018_2828384
source IEEE Electronic Library (IEL)
subjects Ambient temperature
Capacitance
Capacitance bridges
Circuit boards
Circuits
Density measurement
Design optimization
Electromagnetic interference
Electronics
Energy conversion efficiency
gallium nitride (GaN)
Gallium nitrides
Gate drive
Gate drivers
isolation capacitor
Logic gates
Pareto optimization
Power converters
Power supplies
Power supply
Power system measurements
Printed circuits
printed-circuit-board (PCB)-embedded
Rectifiers
Reliability analysis
Substrates
Switching
Transformers
title Ultralow Input-Output Capacitance PCB-Embedded Dual-Output Gate-Drive Power Supply for 650 V GaN-Based Half-Bridges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20Input-Output%20Capacitance%20PCB-Embedded%20Dual-Output%20Gate-Drive%20Power%20Supply%20for%20650%20V%20GaN-Based%20Half-Bridges&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Sun,%20Bingyao&rft.date=2019-02-01&rft.volume=34&rft.issue=2&rft.spage=1382&rft.epage=1393&rft.pages=1382-1393&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2018.2828384&rft_dat=%3Cproquest_RIE%3E2159397344%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159397344&rft_id=info:pmid/&rft_ieee_id=8340881&rfr_iscdi=true