A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High-Power IGBT Modules
Detailed thermal dynamics of high-power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2018-03, Vol.33 (3), p.2518-2530 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2530 |
---|---|
container_issue | 3 |
container_start_page | 2518 |
container_title | IEEE transactions on power electronics |
container_volume | 33 |
creator | Bahman, Amir Sajjad Ke Ma Blaabjerg, Frede |
description | Detailed thermal dynamics of high-power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device; moreover, some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three-dimensional (3-D) thermal models based on finite-element method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped 3-D thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical thermal distribution under long-term studies. Meanwhile, the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real-field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations and experimental results show a good agreement. |
doi_str_mv | 10.1109/TPEL.2017.2694548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2017_2694548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7903728</ieee_id><sourcerecordid>2174535583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-75fa82dd1bc28c58f502d8b5442bb1c5958f45fb240696f389fc43ca7b4bd0103</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRsFZ_gLgJuE6cZzOzbEttCxG7iOshmUebkmTiTIP4701oqasL555zL-cD4BnBBCEo3vLdKkswRGmCZ4Iyym_ABAmKYohgegsmkHMWcyHIPXgI4QghogyiCWjmUdY3ndFRfjC-Kerow2lTR9tW1b2u2v1VX7q-q0ehaP_NC9e3uvC_w7bV1alybYis89Gm2h_infsxPtquF_l4tK9NeAR3tqiDebrMKfh6X-XLTZx9rrfLeRYrCvEpTpktONYalQpzxbhlEGteMkpxWSLFxCBRZktM4UzMLOHCKkpUkZa01ENhMgWv57udd9-9CSd5dL1vh5cSo5QywhgngwudXcq7ELyxsvNVM7SRCMqRqhypypGqvFAdMi_nTGWMufpTAUmKOfkDnety-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174535583</pqid></control><display><type>article</type><title>A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High-Power IGBT Modules</title><source>IEEE Electronic Library (IEL)</source><creator>Bahman, Amir Sajjad ; Ke Ma ; Blaabjerg, Frede</creator><creatorcontrib>Bahman, Amir Sajjad ; Ke Ma ; Blaabjerg, Frede</creatorcontrib><description>Detailed thermal dynamics of high-power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device; moreover, some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three-dimensional (3-D) thermal models based on finite-element method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped 3-D thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical thermal distribution under long-term studies. Meanwhile, the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real-field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations and experimental results show a good agreement.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2017.2694548</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boundary conditions ; Computer simulation ; Converters ; Electronic systems ; Finite element analysis ; Finite element method ; finite-element method (FEM) ; Heating systems ; Insulated gate bipolar transistors ; insulated gate bipolar transistors (IGBTs) ; Integrated circuit modeling ; Mathematical analysis ; Mathematical model ; Mathematical models ; Model accuracy ; Modules ; power converters ; reliability ; Reliability analysis ; Thermal analysis ; Thermal coupling ; Thermal design ; thermal modeling ; Thermodynamic properties ; Three dimensional models ; Transient analysis</subject><ispartof>IEEE transactions on power electronics, 2018-03, Vol.33 (3), p.2518-2530</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-75fa82dd1bc28c58f502d8b5442bb1c5958f45fb240696f389fc43ca7b4bd0103</citedby><cites>FETCH-LOGICAL-c402t-75fa82dd1bc28c58f502d8b5442bb1c5958f45fb240696f389fc43ca7b4bd0103</cites><orcidid>0000-0002-8154-4354 ; 0000-0001-7138-1902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7903728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7903728$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bahman, Amir Sajjad</creatorcontrib><creatorcontrib>Ke Ma</creatorcontrib><creatorcontrib>Blaabjerg, Frede</creatorcontrib><title>A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High-Power IGBT Modules</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Detailed thermal dynamics of high-power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device; moreover, some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three-dimensional (3-D) thermal models based on finite-element method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped 3-D thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical thermal distribution under long-term studies. Meanwhile, the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real-field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations and experimental results show a good agreement.</description><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Converters</subject><subject>Electronic systems</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite-element method (FEM)</subject><subject>Heating systems</subject><subject>Insulated gate bipolar transistors</subject><subject>insulated gate bipolar transistors (IGBTs)</subject><subject>Integrated circuit modeling</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Modules</subject><subject>power converters</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>Thermal analysis</subject><subject>Thermal coupling</subject><subject>Thermal design</subject><subject>thermal modeling</subject><subject>Thermodynamic properties</subject><subject>Three dimensional models</subject><subject>Transient analysis</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkEtLw0AUhQdRsFZ_gLgJuE6cZzOzbEttCxG7iOshmUebkmTiTIP4701oqasL555zL-cD4BnBBCEo3vLdKkswRGmCZ4Iyym_ABAmKYohgegsmkHMWcyHIPXgI4QghogyiCWjmUdY3ndFRfjC-Kerow2lTR9tW1b2u2v1VX7q-q0ehaP_NC9e3uvC_w7bV1alybYis89Gm2h_infsxPtquF_l4tK9NeAR3tqiDebrMKfh6X-XLTZx9rrfLeRYrCvEpTpktONYalQpzxbhlEGteMkpxWSLFxCBRZktM4UzMLOHCKkpUkZa01ENhMgWv57udd9-9CSd5dL1vh5cSo5QywhgngwudXcq7ELyxsvNVM7SRCMqRqhypypGqvFAdMi_nTGWMufpTAUmKOfkDnety-A</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Bahman, Amir Sajjad</creator><creator>Ke Ma</creator><creator>Blaabjerg, Frede</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8154-4354</orcidid><orcidid>https://orcid.org/0000-0001-7138-1902</orcidid></search><sort><creationdate>20180301</creationdate><title>A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High-Power IGBT Modules</title><author>Bahman, Amir Sajjad ; Ke Ma ; Blaabjerg, Frede</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-75fa82dd1bc28c58f502d8b5442bb1c5958f45fb240696f389fc43ca7b4bd0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Converters</topic><topic>Electronic systems</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite-element method (FEM)</topic><topic>Heating systems</topic><topic>Insulated gate bipolar transistors</topic><topic>insulated gate bipolar transistors (IGBTs)</topic><topic>Integrated circuit modeling</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Modules</topic><topic>power converters</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>Thermal analysis</topic><topic>Thermal coupling</topic><topic>Thermal design</topic><topic>thermal modeling</topic><topic>Thermodynamic properties</topic><topic>Three dimensional models</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahman, Amir Sajjad</creatorcontrib><creatorcontrib>Ke Ma</creatorcontrib><creatorcontrib>Blaabjerg, Frede</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bahman, Amir Sajjad</au><au>Ke Ma</au><au>Blaabjerg, Frede</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High-Power IGBT Modules</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>33</volume><issue>3</issue><spage>2518</spage><epage>2530</epage><pages>2518-2530</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Detailed thermal dynamics of high-power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device; moreover, some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three-dimensional (3-D) thermal models based on finite-element method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped 3-D thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical thermal distribution under long-term studies. Meanwhile, the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real-field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations and experimental results show a good agreement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2017.2694548</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8154-4354</orcidid><orcidid>https://orcid.org/0000-0001-7138-1902</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2018-03, Vol.33 (3), p.2518-2530 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2017_2694548 |
source | IEEE Electronic Library (IEL) |
subjects | Boundary conditions Computer simulation Converters Electronic systems Finite element analysis Finite element method finite-element method (FEM) Heating systems Insulated gate bipolar transistors insulated gate bipolar transistors (IGBTs) Integrated circuit modeling Mathematical analysis Mathematical model Mathematical models Model accuracy Modules power converters reliability Reliability analysis Thermal analysis Thermal coupling Thermal design thermal modeling Thermodynamic properties Three dimensional models Transient analysis |
title | A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High-Power IGBT Modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lumped%20Thermal%20Model%20Including%20Thermal%20Coupling%20and%20Thermal%20Boundary%20Conditions%20for%20High-Power%20IGBT%20Modules&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Bahman,%20Amir%20Sajjad&rft.date=2018-03-01&rft.volume=33&rft.issue=3&rft.spage=2518&rft.epage=2530&rft.pages=2518-2530&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2017.2694548&rft_dat=%3Cproquest_RIE%3E2174535583%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174535583&rft_id=info:pmid/&rft_ieee_id=7903728&rfr_iscdi=true |