Enhanced Automatic-Power-Decoupling Control Method for Single-Phase AC-to-DC Converters

Existing control schemes for single-phase ac-to-dc converters with active power-decoupling function typically involve a dedicated power-decoupling controller. Due to the highly coupled and nonlinear nature of the single-phase system, the design of the power-decoupling controller (typically based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2018-02, Vol.33 (2), p.1816-1828
Hauptverfasser: Sinan Li, Wenlong Qi, Siew-Chong Tan, Hui, S. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Existing control schemes for single-phase ac-to-dc converters with active power-decoupling function typically involve a dedicated power-decoupling controller. Due to the highly coupled and nonlinear nature of the single-phase system, the design of the power-decoupling controller (typically based on the small-signal linear control techniques) is cumbersome, and the control structure is complicated. Additionally, with the existing power-decoupling control, it is hard to achieve satisfied dynamic responses and robust circuit operation. Following a recently proposed automatic-power-decoupling control scheme, this paper proposes a nonlinear control method that can achieve enhanced large-signal dynamic responses with strong disturbance rejection capability without the need for a dedicated power-decoupling controller. The proposed controller has a simple structure, of which the design is straightforward. The control method can be easily extended to other single-phase ac-to-dc systems with active power-decoupling function. Simulation and experimental results validate the feasibility of the proposed control method on a two-switch buck-boost PFC rectifier prototype.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2017.2689062