Scaled Current Tracking Control for Doubly Fed Induction Generator to Ride-Through Serious Grid Faults
For doubly fed induction generator (DFIG)-based wind turbine, the main constraint to ride-through serious grid faults is the limited converter rating. In order to realize controllable low voltage ride through (LVRT) under the typical converter rating, transient control reference usually need to be m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2016-03, Vol.31 (3), p.2150-2165 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2165 |
---|---|
container_issue | 3 |
container_start_page | 2150 |
container_title | IEEE transactions on power electronics |
container_volume | 31 |
creator | Huang, Qingjun Zou, Xudong Zhu, Donghai Kang, Yong |
description | For doubly fed induction generator (DFIG)-based wind turbine, the main constraint to ride-through serious grid faults is the limited converter rating. In order to realize controllable low voltage ride through (LVRT) under the typical converter rating, transient control reference usually need to be modified to adapt to the constraint of converter's maximum output voltage. Generally, the generation of such reference relies on observation of stator flux and even sequence separation. This is susceptible to observation errors during the fault transient; moreover, it increases the complexity of control system. For this issue, this paper proposes a scaled current tracking control for rotor-side converter (RSC) to enhance its LVRT capacity without flux observation. In this method, rotor current is controlled to track stator current in a certain scale. Under proper tracking coefficient, both the required rotor current and rotor voltage can be constrained within the permissible ranges of RSC, thus it can maintain DFIG under control to suppress overcurrent and overvoltage. Moreover, during fault transient, electromagnetic torque oscillations can be greatly suppressed. Based on it, certain additional positive-sequence item is injected into rotor current reference to supply dynamic reactive support. Simulation and experimental results demonstrate the feasibility of the proposed method. |
doi_str_mv | 10.1109/TPEL.2015.2429153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2015_2429153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7101281</ieee_id><sourcerecordid>1778050197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-33edbcf68c919acaee0011f006eeb4f2fa1fd04f9d031da4f8eac85607c6f08b3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEuXjByAWSywsKXdxPuwRlbZUqgSCMkeuc4ZAiIudDP33uGrFwHTDPe_pvYexK4QxIqi71fN0OU4B83GapQpzccRGqDJMAKE8ZiOQMk-kUuKUnYXwCYBZDjhi9tXolmo-Gbynrucrr81X073ziet671punecPbli3Wz6L3KKrB9M3ruNz6sjrPq57x1-ampLVh3fD-wd_Jd-4IfC5b2o-00Pbhwt2YnUb6PIwz9nbbLqaPCbLp_licr9MjEiLPhGC6rWxhTQKlTaaKBZFC1AQrTObWo22hsyqGgTWOrOStJF5AaUpLMi1OGe3-7sb734GCn313QRDbas7ipUqLEsJ8XFVRvTmH_rpBt_FdpHKCilLkalI4Z4y3oXgyVYb33xrv60Qqp35ame-2pmvDuZj5nqfaYjojy8RMJUofgE6hX_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746887349</pqid></control><display><type>article</type><title>Scaled Current Tracking Control for Doubly Fed Induction Generator to Ride-Through Serious Grid Faults</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Qingjun ; Zou, Xudong ; Zhu, Donghai ; Kang, Yong</creator><creatorcontrib>Huang, Qingjun ; Zou, Xudong ; Zhu, Donghai ; Kang, Yong</creatorcontrib><description>For doubly fed induction generator (DFIG)-based wind turbine, the main constraint to ride-through serious grid faults is the limited converter rating. In order to realize controllable low voltage ride through (LVRT) under the typical converter rating, transient control reference usually need to be modified to adapt to the constraint of converter's maximum output voltage. Generally, the generation of such reference relies on observation of stator flux and even sequence separation. This is susceptible to observation errors during the fault transient; moreover, it increases the complexity of control system. For this issue, this paper proposes a scaled current tracking control for rotor-side converter (RSC) to enhance its LVRT capacity without flux observation. In this method, rotor current is controlled to track stator current in a certain scale. Under proper tracking coefficient, both the required rotor current and rotor voltage can be constrained within the permissible ranges of RSC, thus it can maintain DFIG under control to suppress overcurrent and overvoltage. Moreover, during fault transient, electromagnetic torque oscillations can be greatly suppressed. Based on it, certain additional positive-sequence item is injected into rotor current reference to supply dynamic reactive support. Simulation and experimental results demonstrate the feasibility of the proposed method.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2015.2429153</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Converters ; doubly fed induction generator (DFIG) ; Electric potential ; Faults ; Feedforward neural networks ; Flux ; Generators ; Inductance ; low voltage ride-through (LVRT) ; Ratings ; rotor-side converter ; Rotors ; scaled current tracking control without flux observation ; Simulation ; Stators ; Tracking ; Tracking control ; Tracking control systems ; Transient analysis ; Turbines ; Voltage control ; Wind power</subject><ispartof>IEEE transactions on power electronics, 2016-03, Vol.31 (3), p.2150-2165</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-33edbcf68c919acaee0011f006eeb4f2fa1fd04f9d031da4f8eac85607c6f08b3</citedby><cites>FETCH-LOGICAL-c326t-33edbcf68c919acaee0011f006eeb4f2fa1fd04f9d031da4f8eac85607c6f08b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7101281$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7101281$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Qingjun</creatorcontrib><creatorcontrib>Zou, Xudong</creatorcontrib><creatorcontrib>Zhu, Donghai</creatorcontrib><creatorcontrib>Kang, Yong</creatorcontrib><title>Scaled Current Tracking Control for Doubly Fed Induction Generator to Ride-Through Serious Grid Faults</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>For doubly fed induction generator (DFIG)-based wind turbine, the main constraint to ride-through serious grid faults is the limited converter rating. In order to realize controllable low voltage ride through (LVRT) under the typical converter rating, transient control reference usually need to be modified to adapt to the constraint of converter's maximum output voltage. Generally, the generation of such reference relies on observation of stator flux and even sequence separation. This is susceptible to observation errors during the fault transient; moreover, it increases the complexity of control system. For this issue, this paper proposes a scaled current tracking control for rotor-side converter (RSC) to enhance its LVRT capacity without flux observation. In this method, rotor current is controlled to track stator current in a certain scale. Under proper tracking coefficient, both the required rotor current and rotor voltage can be constrained within the permissible ranges of RSC, thus it can maintain DFIG under control to suppress overcurrent and overvoltage. Moreover, during fault transient, electromagnetic torque oscillations can be greatly suppressed. Based on it, certain additional positive-sequence item is injected into rotor current reference to supply dynamic reactive support. Simulation and experimental results demonstrate the feasibility of the proposed method.</description><subject>Control systems</subject><subject>Converters</subject><subject>doubly fed induction generator (DFIG)</subject><subject>Electric potential</subject><subject>Faults</subject><subject>Feedforward neural networks</subject><subject>Flux</subject><subject>Generators</subject><subject>Inductance</subject><subject>low voltage ride-through (LVRT)</subject><subject>Ratings</subject><subject>rotor-side converter</subject><subject>Rotors</subject><subject>scaled current tracking control without flux observation</subject><subject>Simulation</subject><subject>Stators</subject><subject>Tracking</subject><subject>Tracking control</subject><subject>Tracking control systems</subject><subject>Transient analysis</subject><subject>Turbines</subject><subject>Voltage control</subject><subject>Wind power</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEuXjByAWSywsKXdxPuwRlbZUqgSCMkeuc4ZAiIudDP33uGrFwHTDPe_pvYexK4QxIqi71fN0OU4B83GapQpzccRGqDJMAKE8ZiOQMk-kUuKUnYXwCYBZDjhi9tXolmo-Gbynrucrr81X073ziet671punecPbli3Wz6L3KKrB9M3ruNz6sjrPq57x1-ampLVh3fD-wd_Jd-4IfC5b2o-00Pbhwt2YnUb6PIwz9nbbLqaPCbLp_licr9MjEiLPhGC6rWxhTQKlTaaKBZFC1AQrTObWo22hsyqGgTWOrOStJF5AaUpLMi1OGe3-7sb734GCn313QRDbas7ipUqLEsJ8XFVRvTmH_rpBt_FdpHKCilLkalI4Z4y3oXgyVYb33xrv60Qqp35ame-2pmvDuZj5nqfaYjojy8RMJUofgE6hX_1</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Huang, Qingjun</creator><creator>Zou, Xudong</creator><creator>Zhu, Donghai</creator><creator>Kang, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201603</creationdate><title>Scaled Current Tracking Control for Doubly Fed Induction Generator to Ride-Through Serious Grid Faults</title><author>Huang, Qingjun ; Zou, Xudong ; Zhu, Donghai ; Kang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-33edbcf68c919acaee0011f006eeb4f2fa1fd04f9d031da4f8eac85607c6f08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Control systems</topic><topic>Converters</topic><topic>doubly fed induction generator (DFIG)</topic><topic>Electric potential</topic><topic>Faults</topic><topic>Feedforward neural networks</topic><topic>Flux</topic><topic>Generators</topic><topic>Inductance</topic><topic>low voltage ride-through (LVRT)</topic><topic>Ratings</topic><topic>rotor-side converter</topic><topic>Rotors</topic><topic>scaled current tracking control without flux observation</topic><topic>Simulation</topic><topic>Stators</topic><topic>Tracking</topic><topic>Tracking control</topic><topic>Tracking control systems</topic><topic>Transient analysis</topic><topic>Turbines</topic><topic>Voltage control</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qingjun</creatorcontrib><creatorcontrib>Zou, Xudong</creatorcontrib><creatorcontrib>Zhu, Donghai</creatorcontrib><creatorcontrib>Kang, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Qingjun</au><au>Zou, Xudong</au><au>Zhu, Donghai</au><au>Kang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaled Current Tracking Control for Doubly Fed Induction Generator to Ride-Through Serious Grid Faults</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2016-03</date><risdate>2016</risdate><volume>31</volume><issue>3</issue><spage>2150</spage><epage>2165</epage><pages>2150-2165</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>For doubly fed induction generator (DFIG)-based wind turbine, the main constraint to ride-through serious grid faults is the limited converter rating. In order to realize controllable low voltage ride through (LVRT) under the typical converter rating, transient control reference usually need to be modified to adapt to the constraint of converter's maximum output voltage. Generally, the generation of such reference relies on observation of stator flux and even sequence separation. This is susceptible to observation errors during the fault transient; moreover, it increases the complexity of control system. For this issue, this paper proposes a scaled current tracking control for rotor-side converter (RSC) to enhance its LVRT capacity without flux observation. In this method, rotor current is controlled to track stator current in a certain scale. Under proper tracking coefficient, both the required rotor current and rotor voltage can be constrained within the permissible ranges of RSC, thus it can maintain DFIG under control to suppress overcurrent and overvoltage. Moreover, during fault transient, electromagnetic torque oscillations can be greatly suppressed. Based on it, certain additional positive-sequence item is injected into rotor current reference to supply dynamic reactive support. Simulation and experimental results demonstrate the feasibility of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2015.2429153</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2016-03, Vol.31 (3), p.2150-2165 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2015_2429153 |
source | IEEE Electronic Library (IEL) |
subjects | Control systems Converters doubly fed induction generator (DFIG) Electric potential Faults Feedforward neural networks Flux Generators Inductance low voltage ride-through (LVRT) Ratings rotor-side converter Rotors scaled current tracking control without flux observation Simulation Stators Tracking Tracking control Tracking control systems Transient analysis Turbines Voltage control Wind power |
title | Scaled Current Tracking Control for Doubly Fed Induction Generator to Ride-Through Serious Grid Faults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaled%20Current%20Tracking%20Control%20for%20Doubly%20Fed%20Induction%20Generator%20to%20Ride-Through%20Serious%20Grid%20Faults&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Huang,%20Qingjun&rft.date=2016-03&rft.volume=31&rft.issue=3&rft.spage=2150&rft.epage=2165&rft.pages=2150-2165&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2015.2429153&rft_dat=%3Cproquest_RIE%3E1778050197%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746887349&rft_id=info:pmid/&rft_ieee_id=7101281&rfr_iscdi=true |