A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles
In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2014-07, Vol.29 (7), p.3537-3546 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3546 |
---|---|
container_issue | 7 |
container_start_page | 3537 |
container_title | IEEE transactions on power electronics |
container_volume | 29 |
creator | Zheng, Zedong Wang, Kui Xu, Lie Li, Yongdong |
description | In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for EV. In the proposed topology, each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter. All half-bridges are cascaded to output a staircase shape dc voltage. Then, an H-bridge converter is used to change the direction of the dc bus voltages to make up ac voltages. The outputs of the converter are multilevel voltages with less harmonics and lower dv/dt, which is helpful to improve the performance of the motor drives. By separate control according to the SOC of each cell, the energy utilization ratio of the batteries can be improved. The imbalance of terminal voltage and SOC can also be avoided, fault-tolerant can be easily realized by modular cascaded circuit, so the life of the battery stack will be extended. Simulation and experiments are implemented to verify the performance of the proposed converter. |
doi_str_mv | 10.1109/TPEL.2013.2279185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2013_2279185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6632934</ieee_id><sourcerecordid>3230311501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a744213935a712ef06438e7aa4f558ffd471197deef7dd55f8c3554104fe8a3b3</originalsourceid><addsrcrecordid>eNpdkE2LFDEQhoMoOK7-APESEGEvPVblo5Mcx2F0hVn0sHptst2VNUume0x6Fubfm2GGPXgoqqCetygext4jLBHBfb77udkuBaBcCmEcWv2CLdApbADBvGQLsFY31jn5mr0p5REAlQZcML_iN8f7HAe-9qX3Aw389pDmmOiJEl9P4xPlmTIPU-Zf_FzHI9-MlB-O_NaP_oF2NM58td-nWKNx5JtE_Zxjz3_Tn9gnKm_Zq-BToXeXfsV-fd3crW-a7Y9v39erbdNL3c6NN0oJlE5qb1BQgFZJS8Z7FbS2IQzKIDozEAUzDFoHW3NaIahA1st7ecWuz3f3efp7oDJ3u1h6SsmPNB1Kh1qAa4UBU9GP_6GP0yGP9btKgYBara0Unqk-T6VkCt0-x53Pxw6hO0nvTtK7k_TuIr1mPl0un2ymkP3Yx_IcFLYFqYSs3IczF4noed22Ujip5D_L0Ily</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1502050268</pqid></control><display><type>article</type><title>A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Zedong ; Wang, Kui ; Xu, Lie ; Li, Yongdong</creator><creatorcontrib>Zheng, Zedong ; Wang, Kui ; Xu, Lie ; Li, Yongdong</creatorcontrib><description>In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for EV. In the proposed topology, each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter. All half-bridges are cascaded to output a staircase shape dc voltage. Then, an H-bridge converter is used to change the direction of the dc bus voltages to make up ac voltages. The outputs of the converter are multilevel voltages with less harmonics and lower dv/dt, which is helpful to improve the performance of the motor drives. By separate control according to the SOC of each cell, the energy utilization ratio of the batteries can be improved. The imbalance of terminal voltage and SOC can also be avoided, fault-tolerant can be easily realized by modular cascaded circuit, so the life of the battery stack will be extended. Simulation and experiments are implemented to verify the performance of the proposed converter.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2013.2279185</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Batteries ; Battery cell ; charging and discharging ; Circuit properties ; Converters ; Direct energy conversion and energy accumulation ; Electric batteries ; Electric currents ; Electric potential ; electric vehicle (EV) ; Electric vehicles ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electronic circuits ; Electronics ; Energy management ; Exact sciences and technology ; Fault tolerance ; hybrid cascaded multilevel converter ; Inverters ; Motors ; Multilevel ; Operation. Load control. Reliability ; Power electronics, power supplies ; Power networks and lines ; Power supply ; Pulse width modulation ; Signal convertors ; Simulation ; Switches ; Switching loss ; System-on-chip ; Voltage ; voltage balance ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2014-07, Vol.29 (7), p.3537-3546</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a744213935a712ef06438e7aa4f558ffd471197deef7dd55f8c3554104fe8a3b3</citedby><cites>FETCH-LOGICAL-c356t-a744213935a712ef06438e7aa4f558ffd471197deef7dd55f8c3554104fe8a3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6632934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6632934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28603423$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Zedong</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Xu, Lie</creatorcontrib><creatorcontrib>Li, Yongdong</creatorcontrib><title>A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for EV. In the proposed topology, each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter. All half-bridges are cascaded to output a staircase shape dc voltage. Then, an H-bridge converter is used to change the direction of the dc bus voltages to make up ac voltages. The outputs of the converter are multilevel voltages with less harmonics and lower dv/dt, which is helpful to improve the performance of the motor drives. By separate control according to the SOC of each cell, the energy utilization ratio of the batteries can be improved. The imbalance of terminal voltage and SOC can also be avoided, fault-tolerant can be easily realized by modular cascaded circuit, so the life of the battery stack will be extended. Simulation and experiments are implemented to verify the performance of the proposed converter.</description><subject>Applied sciences</subject><subject>Batteries</subject><subject>Battery cell</subject><subject>charging and discharging</subject><subject>Circuit properties</subject><subject>Converters</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric batteries</subject><subject>Electric currents</subject><subject>Electric potential</subject><subject>electric vehicle (EV)</subject><subject>Electric vehicles</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy management</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>hybrid cascaded multilevel converter</subject><subject>Inverters</subject><subject>Motors</subject><subject>Multilevel</subject><subject>Operation. Load control. Reliability</subject><subject>Power electronics, power supplies</subject><subject>Power networks and lines</subject><subject>Power supply</subject><subject>Pulse width modulation</subject><subject>Signal convertors</subject><subject>Simulation</subject><subject>Switches</subject><subject>Switching loss</subject><subject>System-on-chip</subject><subject>Voltage</subject><subject>voltage balance</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE2LFDEQhoMoOK7-APESEGEvPVblo5Mcx2F0hVn0sHptst2VNUume0x6Fubfm2GGPXgoqqCetygext4jLBHBfb77udkuBaBcCmEcWv2CLdApbADBvGQLsFY31jn5mr0p5REAlQZcML_iN8f7HAe-9qX3Aw389pDmmOiJEl9P4xPlmTIPU-Zf_FzHI9-MlB-O_NaP_oF2NM58td-nWKNx5JtE_Zxjz3_Tn9gnKm_Zq-BToXeXfsV-fd3crW-a7Y9v39erbdNL3c6NN0oJlE5qb1BQgFZJS8Z7FbS2IQzKIDozEAUzDFoHW3NaIahA1st7ecWuz3f3efp7oDJ3u1h6SsmPNB1Kh1qAa4UBU9GP_6GP0yGP9btKgYBara0Unqk-T6VkCt0-x53Pxw6hO0nvTtK7k_TuIr1mPl0un2ymkP3Yx_IcFLYFqYSs3IczF4noed22Ujip5D_L0Ily</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Zheng, Zedong</creator><creator>Wang, Kui</creator><creator>Xu, Lie</creator><creator>Li, Yongdong</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20140701</creationdate><title>A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles</title><author>Zheng, Zedong ; Wang, Kui ; Xu, Lie ; Li, Yongdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a744213935a712ef06438e7aa4f558ffd471197deef7dd55f8c3554104fe8a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Batteries</topic><topic>Battery cell</topic><topic>charging and discharging</topic><topic>Circuit properties</topic><topic>Converters</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric batteries</topic><topic>Electric currents</topic><topic>Electric potential</topic><topic>electric vehicle (EV)</topic><topic>Electric vehicles</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy management</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>hybrid cascaded multilevel converter</topic><topic>Inverters</topic><topic>Motors</topic><topic>Multilevel</topic><topic>Operation. Load control. Reliability</topic><topic>Power electronics, power supplies</topic><topic>Power networks and lines</topic><topic>Power supply</topic><topic>Pulse width modulation</topic><topic>Signal convertors</topic><topic>Simulation</topic><topic>Switches</topic><topic>Switching loss</topic><topic>System-on-chip</topic><topic>Voltage</topic><topic>voltage balance</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zedong</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Xu, Lie</creatorcontrib><creatorcontrib>Li, Yongdong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Zedong</au><au>Wang, Kui</au><au>Xu, Lie</au><au>Li, Yongdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>29</volume><issue>7</issue><spage>3537</spage><epage>3546</epage><pages>3537-3546</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for EV. In the proposed topology, each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter. All half-bridges are cascaded to output a staircase shape dc voltage. Then, an H-bridge converter is used to change the direction of the dc bus voltages to make up ac voltages. The outputs of the converter are multilevel voltages with less harmonics and lower dv/dt, which is helpful to improve the performance of the motor drives. By separate control according to the SOC of each cell, the energy utilization ratio of the batteries can be improved. The imbalance of terminal voltage and SOC can also be avoided, fault-tolerant can be easily realized by modular cascaded circuit, so the life of the battery stack will be extended. Simulation and experiments are implemented to verify the performance of the proposed converter.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2013.2279185</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2014-07, Vol.29 (7), p.3537-3546 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2013_2279185 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Batteries Battery cell charging and discharging Circuit properties Converters Direct energy conversion and energy accumulation Electric batteries Electric currents Electric potential electric vehicle (EV) Electric vehicles Electric, optical and optoelectronic circuits Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electronic circuits Electronics Energy management Exact sciences and technology Fault tolerance hybrid cascaded multilevel converter Inverters Motors Multilevel Operation. Load control. Reliability Power electronics, power supplies Power networks and lines Power supply Pulse width modulation Signal convertors Simulation Switches Switching loss System-on-chip Voltage voltage balance Voltage control |
title | A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Cascaded%20Multilevel%20Converter%20for%20Battery%20Energy%20Management%20Applied%20in%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zheng,%20Zedong&rft.date=2014-07-01&rft.volume=29&rft.issue=7&rft.spage=3537&rft.epage=3546&rft.pages=3537-3546&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2013.2279185&rft_dat=%3Cproquest_RIE%3E3230311501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1502050268&rft_id=info:pmid/&rft_ieee_id=6632934&rfr_iscdi=true |