A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles

In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2014-07, Vol.29 (7), p.3537-3546
Hauptverfasser: Zheng, Zedong, Wang, Kui, Xu, Lie, Li, Yongdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3546
container_issue 7
container_start_page 3537
container_title IEEE transactions on power electronics
container_volume 29
creator Zheng, Zedong
Wang, Kui
Xu, Lie
Li, Yongdong
description In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for EV. In the proposed topology, each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter. All half-bridges are cascaded to output a staircase shape dc voltage. Then, an H-bridge converter is used to change the direction of the dc bus voltages to make up ac voltages. The outputs of the converter are multilevel voltages with less harmonics and lower dv/dt, which is helpful to improve the performance of the motor drives. By separate control according to the SOC of each cell, the energy utilization ratio of the batteries can be improved. The imbalance of terminal voltage and SOC can also be avoided, fault-tolerant can be easily realized by modular cascaded circuit, so the life of the battery stack will be extended. Simulation and experiments are implemented to verify the performance of the proposed converter.
doi_str_mv 10.1109/TPEL.2013.2279185
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2013_2279185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6632934</ieee_id><sourcerecordid>3230311501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a744213935a712ef06438e7aa4f558ffd471197deef7dd55f8c3554104fe8a3b3</originalsourceid><addsrcrecordid>eNpdkE2LFDEQhoMoOK7-APESEGEvPVblo5Mcx2F0hVn0sHptst2VNUume0x6Fubfm2GGPXgoqqCetygext4jLBHBfb77udkuBaBcCmEcWv2CLdApbADBvGQLsFY31jn5mr0p5REAlQZcML_iN8f7HAe-9qX3Aw389pDmmOiJEl9P4xPlmTIPU-Zf_FzHI9-MlB-O_NaP_oF2NM58td-nWKNx5JtE_Zxjz3_Tn9gnKm_Zq-BToXeXfsV-fd3crW-a7Y9v39erbdNL3c6NN0oJlE5qb1BQgFZJS8Z7FbS2IQzKIDozEAUzDFoHW3NaIahA1st7ecWuz3f3efp7oDJ3u1h6SsmPNB1Kh1qAa4UBU9GP_6GP0yGP9btKgYBara0Unqk-T6VkCt0-x53Pxw6hO0nvTtK7k_TuIr1mPl0un2ymkP3Yx_IcFLYFqYSs3IczF4noed22Ujip5D_L0Ily</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1502050268</pqid></control><display><type>article</type><title>A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Zedong ; Wang, Kui ; Xu, Lie ; Li, Yongdong</creator><creatorcontrib>Zheng, Zedong ; Wang, Kui ; Xu, Lie ; Li, Yongdong</creatorcontrib><description>In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for EV. In the proposed topology, each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter. All half-bridges are cascaded to output a staircase shape dc voltage. Then, an H-bridge converter is used to change the direction of the dc bus voltages to make up ac voltages. The outputs of the converter are multilevel voltages with less harmonics and lower dv/dt, which is helpful to improve the performance of the motor drives. By separate control according to the SOC of each cell, the energy utilization ratio of the batteries can be improved. The imbalance of terminal voltage and SOC can also be avoided, fault-tolerant can be easily realized by modular cascaded circuit, so the life of the battery stack will be extended. Simulation and experiments are implemented to verify the performance of the proposed converter.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2013.2279185</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Batteries ; Battery cell ; charging and discharging ; Circuit properties ; Converters ; Direct energy conversion and energy accumulation ; Electric batteries ; Electric currents ; Electric potential ; electric vehicle (EV) ; Electric vehicles ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electronic circuits ; Electronics ; Energy management ; Exact sciences and technology ; Fault tolerance ; hybrid cascaded multilevel converter ; Inverters ; Motors ; Multilevel ; Operation. Load control. Reliability ; Power electronics, power supplies ; Power networks and lines ; Power supply ; Pulse width modulation ; Signal convertors ; Simulation ; Switches ; Switching loss ; System-on-chip ; Voltage ; voltage balance ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2014-07, Vol.29 (7), p.3537-3546</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a744213935a712ef06438e7aa4f558ffd471197deef7dd55f8c3554104fe8a3b3</citedby><cites>FETCH-LOGICAL-c356t-a744213935a712ef06438e7aa4f558ffd471197deef7dd55f8c3554104fe8a3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6632934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6632934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28603423$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Zedong</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Xu, Lie</creatorcontrib><creatorcontrib>Li, Yongdong</creatorcontrib><title>A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for EV. In the proposed topology, each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter. All half-bridges are cascaded to output a staircase shape dc voltage. Then, an H-bridge converter is used to change the direction of the dc bus voltages to make up ac voltages. The outputs of the converter are multilevel voltages with less harmonics and lower dv/dt, which is helpful to improve the performance of the motor drives. By separate control according to the SOC of each cell, the energy utilization ratio of the batteries can be improved. The imbalance of terminal voltage and SOC can also be avoided, fault-tolerant can be easily realized by modular cascaded circuit, so the life of the battery stack will be extended. Simulation and experiments are implemented to verify the performance of the proposed converter.</description><subject>Applied sciences</subject><subject>Batteries</subject><subject>Battery cell</subject><subject>charging and discharging</subject><subject>Circuit properties</subject><subject>Converters</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric batteries</subject><subject>Electric currents</subject><subject>Electric potential</subject><subject>electric vehicle (EV)</subject><subject>Electric vehicles</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy management</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>hybrid cascaded multilevel converter</subject><subject>Inverters</subject><subject>Motors</subject><subject>Multilevel</subject><subject>Operation. Load control. Reliability</subject><subject>Power electronics, power supplies</subject><subject>Power networks and lines</subject><subject>Power supply</subject><subject>Pulse width modulation</subject><subject>Signal convertors</subject><subject>Simulation</subject><subject>Switches</subject><subject>Switching loss</subject><subject>System-on-chip</subject><subject>Voltage</subject><subject>voltage balance</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE2LFDEQhoMoOK7-APESEGEvPVblo5Mcx2F0hVn0sHptst2VNUume0x6Fubfm2GGPXgoqqCetygext4jLBHBfb77udkuBaBcCmEcWv2CLdApbADBvGQLsFY31jn5mr0p5REAlQZcML_iN8f7HAe-9qX3Aw389pDmmOiJEl9P4xPlmTIPU-Zf_FzHI9-MlB-O_NaP_oF2NM58td-nWKNx5JtE_Zxjz3_Tn9gnKm_Zq-BToXeXfsV-fd3crW-a7Y9v39erbdNL3c6NN0oJlE5qb1BQgFZJS8Z7FbS2IQzKIDozEAUzDFoHW3NaIahA1st7ecWuz3f3efp7oDJ3u1h6SsmPNB1Kh1qAa4UBU9GP_6GP0yGP9btKgYBara0Unqk-T6VkCt0-x53Pxw6hO0nvTtK7k_TuIr1mPl0un2ymkP3Yx_IcFLYFqYSs3IczF4noed22Ujip5D_L0Ily</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Zheng, Zedong</creator><creator>Wang, Kui</creator><creator>Xu, Lie</creator><creator>Li, Yongdong</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20140701</creationdate><title>A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles</title><author>Zheng, Zedong ; Wang, Kui ; Xu, Lie ; Li, Yongdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a744213935a712ef06438e7aa4f558ffd471197deef7dd55f8c3554104fe8a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Batteries</topic><topic>Battery cell</topic><topic>charging and discharging</topic><topic>Circuit properties</topic><topic>Converters</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric batteries</topic><topic>Electric currents</topic><topic>Electric potential</topic><topic>electric vehicle (EV)</topic><topic>Electric vehicles</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy management</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>hybrid cascaded multilevel converter</topic><topic>Inverters</topic><topic>Motors</topic><topic>Multilevel</topic><topic>Operation. Load control. Reliability</topic><topic>Power electronics, power supplies</topic><topic>Power networks and lines</topic><topic>Power supply</topic><topic>Pulse width modulation</topic><topic>Signal convertors</topic><topic>Simulation</topic><topic>Switches</topic><topic>Switching loss</topic><topic>System-on-chip</topic><topic>Voltage</topic><topic>voltage balance</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zedong</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Xu, Lie</creatorcontrib><creatorcontrib>Li, Yongdong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Zedong</au><au>Wang, Kui</au><au>Xu, Lie</au><au>Li, Yongdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>29</volume><issue>7</issue><spage>3537</spage><epage>3546</epage><pages>3537-3546</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for EV. In the proposed topology, each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter. All half-bridges are cascaded to output a staircase shape dc voltage. Then, an H-bridge converter is used to change the direction of the dc bus voltages to make up ac voltages. The outputs of the converter are multilevel voltages with less harmonics and lower dv/dt, which is helpful to improve the performance of the motor drives. By separate control according to the SOC of each cell, the energy utilization ratio of the batteries can be improved. The imbalance of terminal voltage and SOC can also be avoided, fault-tolerant can be easily realized by modular cascaded circuit, so the life of the battery stack will be extended. Simulation and experiments are implemented to verify the performance of the proposed converter.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2013.2279185</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2014-07, Vol.29 (7), p.3537-3546
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2013_2279185
source IEEE Electronic Library (IEL)
subjects Applied sciences
Batteries
Battery cell
charging and discharging
Circuit properties
Converters
Direct energy conversion and energy accumulation
Electric batteries
Electric currents
Electric potential
electric vehicle (EV)
Electric vehicles
Electric, optical and optoelectronic circuits
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electronic circuits
Electronics
Energy management
Exact sciences and technology
Fault tolerance
hybrid cascaded multilevel converter
Inverters
Motors
Multilevel
Operation. Load control. Reliability
Power electronics, power supplies
Power networks and lines
Power supply
Pulse width modulation
Signal convertors
Simulation
Switches
Switching loss
System-on-chip
Voltage
voltage balance
Voltage control
title A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Cascaded%20Multilevel%20Converter%20for%20Battery%20Energy%20Management%20Applied%20in%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zheng,%20Zedong&rft.date=2014-07-01&rft.volume=29&rft.issue=7&rft.spage=3537&rft.epage=3546&rft.pages=3537-3546&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2013.2279185&rft_dat=%3Cproquest_RIE%3E3230311501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1502050268&rft_id=info:pmid/&rft_ieee_id=6632934&rfr_iscdi=true