High Boost Ratio Hybrid Transformer DC-DC Converter for Photovoltaic Module Applications
This paper presents a nonisolated, high boost ratio hybrid transformer dc-dc converter with applications for low-voltage renewable energy sources. The proposed converter utilizes a hybrid transformer to transfer the inductive and capacitive energy simultaneously, achieving a high boost ratio with a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2013-04, Vol.28 (4), p.2048-2058 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2058 |
---|---|
container_issue | 4 |
container_start_page | 2048 |
container_title | IEEE transactions on power electronics |
container_volume | 28 |
creator | Gu, Bin Dominic, Jason Lai, Jih-Sheng Zhao, Zheng Liu, Chuang |
description | This paper presents a nonisolated, high boost ratio hybrid transformer dc-dc converter with applications for low-voltage renewable energy sources. The proposed converter utilizes a hybrid transformer to transfer the inductive and capacitive energy simultaneously, achieving a high boost ratio with a smaller sized magnetic component. As a result of incorporating the resonant operation mode into the traditional high boost ratio pulsewidth modulation converter, the turn-off loss of the switch is reduced, increasing the efficiency of the converter under all load conditions. The input current ripple and conduction losses are also reduced because of the hybrid linear-sinusoidal input current waveforms. The voltage stresses on the active switch and diodes are maintained at a low level and are independent of the changing input voltage over a wide range as a result of the resonant capacitor transferring energy to the output of the converter. The effectiveness of the proposed converter was experimentally verified using a 220-W prototype circuit. Utilizing an input voltage ranging from 20 to 45 V and a load range of 30-220 W, the experimental results show system of efficiencies greater than 96% with a peak efficiency of 97.4% at 35-V input, 160-W output. Due to the high system efficiency and the ability to operate with a wide variable input voltage, the proposed converter is an attractive design for alternative low dc voltage energy sources, such as solar photovoltaic modules and fuel cells. |
doi_str_mv | 10.1109/TPEL.2012.2198834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2012_2198834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6211432</ieee_id><sourcerecordid>2801682211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-10d6594bd867c95d428412ca7614b952b677b6ee53120ef47a44750c38e94e1d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk482uZzddMLEIRO8C_1IXUfX1CQb7N_bsuHV4Rye9z3wIHQPZAJA1NN6NV9OKAE6oaCkZPwCjUBxiAiQ5BKNiJQikkqxa3Tj_ZYQ4ILACH0v6p8NfrbWB_yZhdrixTF3dYnXLmt9Zd3OODxLo1mKU9sejAv93p_xamODPdgmZHWB3225bwyedl1TF0NL62_RVZU13tyd5xh9vczX6SJafry-pdNlVDChQgSkjIXieSnjpFCi5FRyoEWWxMBzJWgeJ0keGyMYUGIqnmScJ4IUTBrFDZRsjB5PvZ2zv3vjg97avWv7lxoARKx439JTcKIKZ713ptKdq3eZO2ogehCoB4F6EKjPAvvMwylTG2P--ZgCcEbZH-SLavg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115694952</pqid></control><display><type>article</type><title>High Boost Ratio Hybrid Transformer DC-DC Converter for Photovoltaic Module Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Gu, Bin ; Dominic, Jason ; Lai, Jih-Sheng ; Zhao, Zheng ; Liu, Chuang</creator><creatorcontrib>Gu, Bin ; Dominic, Jason ; Lai, Jih-Sheng ; Zhao, Zheng ; Liu, Chuang</creatorcontrib><description>This paper presents a nonisolated, high boost ratio hybrid transformer dc-dc converter with applications for low-voltage renewable energy sources. The proposed converter utilizes a hybrid transformer to transfer the inductive and capacitive energy simultaneously, achieving a high boost ratio with a smaller sized magnetic component. As a result of incorporating the resonant operation mode into the traditional high boost ratio pulsewidth modulation converter, the turn-off loss of the switch is reduced, increasing the efficiency of the converter under all load conditions. The input current ripple and conduction losses are also reduced because of the hybrid linear-sinusoidal input current waveforms. The voltage stresses on the active switch and diodes are maintained at a low level and are independent of the changing input voltage over a wide range as a result of the resonant capacitor transferring energy to the output of the converter. The effectiveness of the proposed converter was experimentally verified using a 220-W prototype circuit. Utilizing an input voltage ranging from 20 to 45 V and a load range of 30-220 W, the experimental results show system of efficiencies greater than 96% with a peak efficiency of 97.4% at 35-V input, 160-W output. Due to the high system efficiency and the ability to operate with a wide variable input voltage, the proposed converter is an attractive design for alternative low dc voltage energy sources, such as solar photovoltaic modules and fuel cells.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2012.2198834</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>California energy commission (CEC) efficiency ; Capacitors ; Diodes ; Electric currents ; Electric power ; Electrical equipment ; energy sources with low dc voltage ; European union (EU) efficiency ; Fuel cells ; high boost ratio dc-dc ; high efficiency ; hybrid transformer ; Input output ; Inverters ; Low voltage ; photovoltaic (PV) module ; Photovoltaic systems ; Stress ; Switches</subject><ispartof>IEEE transactions on power electronics, 2013-04, Vol.28 (4), p.2048-2058</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-10d6594bd867c95d428412ca7614b952b677b6ee53120ef47a44750c38e94e1d3</citedby><cites>FETCH-LOGICAL-c359t-10d6594bd867c95d428412ca7614b952b677b6ee53120ef47a44750c38e94e1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6211432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6211432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gu, Bin</creatorcontrib><creatorcontrib>Dominic, Jason</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><creatorcontrib>Zhao, Zheng</creatorcontrib><creatorcontrib>Liu, Chuang</creatorcontrib><title>High Boost Ratio Hybrid Transformer DC-DC Converter for Photovoltaic Module Applications</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper presents a nonisolated, high boost ratio hybrid transformer dc-dc converter with applications for low-voltage renewable energy sources. The proposed converter utilizes a hybrid transformer to transfer the inductive and capacitive energy simultaneously, achieving a high boost ratio with a smaller sized magnetic component. As a result of incorporating the resonant operation mode into the traditional high boost ratio pulsewidth modulation converter, the turn-off loss of the switch is reduced, increasing the efficiency of the converter under all load conditions. The input current ripple and conduction losses are also reduced because of the hybrid linear-sinusoidal input current waveforms. The voltage stresses on the active switch and diodes are maintained at a low level and are independent of the changing input voltage over a wide range as a result of the resonant capacitor transferring energy to the output of the converter. The effectiveness of the proposed converter was experimentally verified using a 220-W prototype circuit. Utilizing an input voltage ranging from 20 to 45 V and a load range of 30-220 W, the experimental results show system of efficiencies greater than 96% with a peak efficiency of 97.4% at 35-V input, 160-W output. Due to the high system efficiency and the ability to operate with a wide variable input voltage, the proposed converter is an attractive design for alternative low dc voltage energy sources, such as solar photovoltaic modules and fuel cells.</description><subject>California energy commission (CEC) efficiency</subject><subject>Capacitors</subject><subject>Diodes</subject><subject>Electric currents</subject><subject>Electric power</subject><subject>Electrical equipment</subject><subject>energy sources with low dc voltage</subject><subject>European union (EU) efficiency</subject><subject>Fuel cells</subject><subject>high boost ratio dc-dc</subject><subject>high efficiency</subject><subject>hybrid transformer</subject><subject>Input output</subject><subject>Inverters</subject><subject>Low voltage</subject><subject>photovoltaic (PV) module</subject><subject>Photovoltaic systems</subject><subject>Stress</subject><subject>Switches</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk482uZzddMLEIRO8C_1IXUfX1CQb7N_bsuHV4Rye9z3wIHQPZAJA1NN6NV9OKAE6oaCkZPwCjUBxiAiQ5BKNiJQikkqxa3Tj_ZYQ4ILACH0v6p8NfrbWB_yZhdrixTF3dYnXLmt9Zd3OODxLo1mKU9sejAv93p_xamODPdgmZHWB3225bwyedl1TF0NL62_RVZU13tyd5xh9vczX6SJafry-pdNlVDChQgSkjIXieSnjpFCi5FRyoEWWxMBzJWgeJ0keGyMYUGIqnmScJ4IUTBrFDZRsjB5PvZ2zv3vjg97avWv7lxoARKx439JTcKIKZ713ptKdq3eZO2ogehCoB4F6EKjPAvvMwylTG2P--ZgCcEbZH-SLavg</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Gu, Bin</creator><creator>Dominic, Jason</creator><creator>Lai, Jih-Sheng</creator><creator>Zhao, Zheng</creator><creator>Liu, Chuang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201304</creationdate><title>High Boost Ratio Hybrid Transformer DC-DC Converter for Photovoltaic Module Applications</title><author>Gu, Bin ; Dominic, Jason ; Lai, Jih-Sheng ; Zhao, Zheng ; Liu, Chuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-10d6594bd867c95d428412ca7614b952b677b6ee53120ef47a44750c38e94e1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>California energy commission (CEC) efficiency</topic><topic>Capacitors</topic><topic>Diodes</topic><topic>Electric currents</topic><topic>Electric power</topic><topic>Electrical equipment</topic><topic>energy sources with low dc voltage</topic><topic>European union (EU) efficiency</topic><topic>Fuel cells</topic><topic>high boost ratio dc-dc</topic><topic>high efficiency</topic><topic>hybrid transformer</topic><topic>Input output</topic><topic>Inverters</topic><topic>Low voltage</topic><topic>photovoltaic (PV) module</topic><topic>Photovoltaic systems</topic><topic>Stress</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Bin</creatorcontrib><creatorcontrib>Dominic, Jason</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><creatorcontrib>Zhao, Zheng</creatorcontrib><creatorcontrib>Liu, Chuang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gu, Bin</au><au>Dominic, Jason</au><au>Lai, Jih-Sheng</au><au>Zhao, Zheng</au><au>Liu, Chuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Boost Ratio Hybrid Transformer DC-DC Converter for Photovoltaic Module Applications</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2013-04</date><risdate>2013</risdate><volume>28</volume><issue>4</issue><spage>2048</spage><epage>2058</epage><pages>2048-2058</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper presents a nonisolated, high boost ratio hybrid transformer dc-dc converter with applications for low-voltage renewable energy sources. The proposed converter utilizes a hybrid transformer to transfer the inductive and capacitive energy simultaneously, achieving a high boost ratio with a smaller sized magnetic component. As a result of incorporating the resonant operation mode into the traditional high boost ratio pulsewidth modulation converter, the turn-off loss of the switch is reduced, increasing the efficiency of the converter under all load conditions. The input current ripple and conduction losses are also reduced because of the hybrid linear-sinusoidal input current waveforms. The voltage stresses on the active switch and diodes are maintained at a low level and are independent of the changing input voltage over a wide range as a result of the resonant capacitor transferring energy to the output of the converter. The effectiveness of the proposed converter was experimentally verified using a 220-W prototype circuit. Utilizing an input voltage ranging from 20 to 45 V and a load range of 30-220 W, the experimental results show system of efficiencies greater than 96% with a peak efficiency of 97.4% at 35-V input, 160-W output. Due to the high system efficiency and the ability to operate with a wide variable input voltage, the proposed converter is an attractive design for alternative low dc voltage energy sources, such as solar photovoltaic modules and fuel cells.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2012.2198834</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2013-04, Vol.28 (4), p.2048-2058 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2012_2198834 |
source | IEEE Electronic Library (IEL) |
subjects | California energy commission (CEC) efficiency Capacitors Diodes Electric currents Electric power Electrical equipment energy sources with low dc voltage European union (EU) efficiency Fuel cells high boost ratio dc-dc high efficiency hybrid transformer Input output Inverters Low voltage photovoltaic (PV) module Photovoltaic systems Stress Switches |
title | High Boost Ratio Hybrid Transformer DC-DC Converter for Photovoltaic Module Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Boost%20Ratio%20Hybrid%20Transformer%20DC-DC%20Converter%20for%20Photovoltaic%20Module%20Applications&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Gu,%20Bin&rft.date=2013-04&rft.volume=28&rft.issue=4&rft.spage=2048&rft.epage=2058&rft.pages=2048-2058&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2012.2198834&rft_dat=%3Cproquest_RIE%3E2801682211%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1115694952&rft_id=info:pmid/&rft_ieee_id=6211432&rfr_iscdi=true |