Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives

Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2012-02, Vol.27 (2), p.519-533
Hauptverfasser: Jun Li, Huang, A. Q., Zhigang Liang, Bhattacharya, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 2
container_start_page 519
container_title IEEE transactions on power electronics
container_volume 27
creator Jun Li
Huang, A. Q.
Zhigang Liang
Bhattacharya, S.
description Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditions, and proposes the fault-tolerant strategies to enable continuous operating of the inverters and drive systems under single and multiple device open- and short-failure conditions. Therefore, the reliability and robustness of the electrical drives are greatly improved. Moreover, the proposed solution adds no additional components to standard 3L-ANPC inverters; thus, the cost for robust operation of drives is lower. Simulation and experiment results are provided for verification. Furthermore, a comprehensive comparison for the reliability function of 3L-ANPC and 3L-NPC inverters is presented. The results show that 3L-ANPC inverters have higher reliability than 3L-NPC inverters when a derating is allowed for the drive system under fault-tolerant operation. If a derated operation is not allowed, the two inverters have similar reliability for device open failure, while 3L-NPC inverters have higher reliability than 3L-ANPC inverters for device short failure.
doi_str_mv 10.1109/TPEL.2011.2143430
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2011_2143430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5751703</ieee_id><sourcerecordid>3470842411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-926cfe6f4f2e8f48e8d73082d6eb7d757bc2c4d3e213b5411265ad68ca375033</originalsourceid><addsrcrecordid>eNpdkUFLAzEQhYMoWKs_QLwEvNTD1kyy2WSPpbYqFO2h9yXNzmpk3dRkq_jvTW3xIAPzLt97DPMIuQQ2BmDl7Wo5W4w5AxhzyEUu2BEZQJlDxoCpYzJgWstMl6U4JWcxvjEGuWQwIH7SmfY7ukhNV9M7jO6lo76hE9u7T6RPyykdTdK-oY_dJ4YeQ6SND3Rutm2frXyLwXQ9fd4k7Z3_9T64l9ds6b8w0FmLtg_OmpbehRQYz8lJY9qIFwcdktV8tpo-ZIvn-8fpZJFZwYs-K3lhGyyavOGom1yjrpVgmtcFrlWtpFpbbvNaIAexljkAL6SpC22NUJIJMSSjfewm-I8txr56d9Fi25oO_TZWUCgQQqtSJvT6H_rmtyF9ZUelUVLIMlGwp2zwMQZsqk1w7yZ8V8CqXQPVroFq10B1aCB5rvYeh4h_vFQSVDrxBw8XgDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616175359</pqid></control><display><type>article</type><title>Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives</title><source>IEEE Electronic Library (IEL)</source><creator>Jun Li ; Huang, A. Q. ; Zhigang Liang ; Bhattacharya, S.</creator><creatorcontrib>Jun Li ; Huang, A. Q. ; Zhigang Liang ; Bhattacharya, S.</creatorcontrib><description>Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditions, and proposes the fault-tolerant strategies to enable continuous operating of the inverters and drive systems under single and multiple device open- and short-failure conditions. Therefore, the reliability and robustness of the electrical drives are greatly improved. Moreover, the proposed solution adds no additional components to standard 3L-ANPC inverters; thus, the cost for robust operation of drives is lower. Simulation and experiment results are provided for verification. Furthermore, a comprehensive comparison for the reliability function of 3L-ANPC and 3L-NPC inverters is presented. The results show that 3L-ANPC inverters have higher reliability than 3L-NPC inverters when a derating is allowed for the drive system under fault-tolerant operation. If a derated operation is not allowed, the two inverters have similar reliability for device open failure, while 3L-NPC inverters have higher reliability than 3L-ANPC inverters for device short failure.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2011.2143430</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active NPC (ANPC) ; Capacitors ; Design ; Devices ; Electric power ; Electric power generation ; electrical drives ; Electrical equipment ; Electronics ; Failure ; Failure analysis ; Fault tolerance ; fault tolerant ; Fault tolerant systems ; high power ; Inverters ; Modulation ; multilevel inverter ; reliability ; Robustness ; Simulation ; Strategy ; Switches</subject><ispartof>IEEE transactions on power electronics, 2012-02, Vol.27 (2), p.519-533</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-926cfe6f4f2e8f48e8d73082d6eb7d757bc2c4d3e213b5411265ad68ca375033</citedby><cites>FETCH-LOGICAL-c326t-926cfe6f4f2e8f48e8d73082d6eb7d757bc2c4d3e213b5411265ad68ca375033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5751703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5751703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jun Li</creatorcontrib><creatorcontrib>Huang, A. Q.</creatorcontrib><creatorcontrib>Zhigang Liang</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><title>Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditions, and proposes the fault-tolerant strategies to enable continuous operating of the inverters and drive systems under single and multiple device open- and short-failure conditions. Therefore, the reliability and robustness of the electrical drives are greatly improved. Moreover, the proposed solution adds no additional components to standard 3L-ANPC inverters; thus, the cost for robust operation of drives is lower. Simulation and experiment results are provided for verification. Furthermore, a comprehensive comparison for the reliability function of 3L-ANPC and 3L-NPC inverters is presented. The results show that 3L-ANPC inverters have higher reliability than 3L-NPC inverters when a derating is allowed for the drive system under fault-tolerant operation. If a derated operation is not allowed, the two inverters have similar reliability for device open failure, while 3L-NPC inverters have higher reliability than 3L-ANPC inverters for device short failure.</description><subject>Active NPC (ANPC)</subject><subject>Capacitors</subject><subject>Design</subject><subject>Devices</subject><subject>Electric power</subject><subject>Electric power generation</subject><subject>electrical drives</subject><subject>Electrical equipment</subject><subject>Electronics</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Fault tolerance</subject><subject>fault tolerant</subject><subject>Fault tolerant systems</subject><subject>high power</subject><subject>Inverters</subject><subject>Modulation</subject><subject>multilevel inverter</subject><subject>reliability</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Strategy</subject><subject>Switches</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFLAzEQhYMoWKs_QLwEvNTD1kyy2WSPpbYqFO2h9yXNzmpk3dRkq_jvTW3xIAPzLt97DPMIuQQ2BmDl7Wo5W4w5AxhzyEUu2BEZQJlDxoCpYzJgWstMl6U4JWcxvjEGuWQwIH7SmfY7ukhNV9M7jO6lo76hE9u7T6RPyykdTdK-oY_dJ4YeQ6SND3Rutm2frXyLwXQ9fd4k7Z3_9T64l9ds6b8w0FmLtg_OmpbehRQYz8lJY9qIFwcdktV8tpo-ZIvn-8fpZJFZwYs-K3lhGyyavOGom1yjrpVgmtcFrlWtpFpbbvNaIAexljkAL6SpC22NUJIJMSSjfewm-I8txr56d9Fi25oO_TZWUCgQQqtSJvT6H_rmtyF9ZUelUVLIMlGwp2zwMQZsqk1w7yZ8V8CqXQPVroFq10B1aCB5rvYeh4h_vFQSVDrxBw8XgDM</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Jun Li</creator><creator>Huang, A. Q.</creator><creator>Zhigang Liang</creator><creator>Bhattacharya, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20120201</creationdate><title>Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives</title><author>Jun Li ; Huang, A. Q. ; Zhigang Liang ; Bhattacharya, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-926cfe6f4f2e8f48e8d73082d6eb7d757bc2c4d3e213b5411265ad68ca375033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active NPC (ANPC)</topic><topic>Capacitors</topic><topic>Design</topic><topic>Devices</topic><topic>Electric power</topic><topic>Electric power generation</topic><topic>electrical drives</topic><topic>Electrical equipment</topic><topic>Electronics</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Fault tolerance</topic><topic>fault tolerant</topic><topic>Fault tolerant systems</topic><topic>high power</topic><topic>Inverters</topic><topic>Modulation</topic><topic>multilevel inverter</topic><topic>reliability</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Strategy</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun Li</creatorcontrib><creatorcontrib>Huang, A. Q.</creatorcontrib><creatorcontrib>Zhigang Liang</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun Li</au><au>Huang, A. Q.</au><au>Zhigang Liang</au><au>Bhattacharya, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>27</volume><issue>2</issue><spage>519</spage><epage>533</epage><pages>519-533</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditions, and proposes the fault-tolerant strategies to enable continuous operating of the inverters and drive systems under single and multiple device open- and short-failure conditions. Therefore, the reliability and robustness of the electrical drives are greatly improved. Moreover, the proposed solution adds no additional components to standard 3L-ANPC inverters; thus, the cost for robust operation of drives is lower. Simulation and experiment results are provided for verification. Furthermore, a comprehensive comparison for the reliability function of 3L-ANPC and 3L-NPC inverters is presented. The results show that 3L-ANPC inverters have higher reliability than 3L-NPC inverters when a derating is allowed for the drive system under fault-tolerant operation. If a derated operation is not allowed, the two inverters have similar reliability for device open failure, while 3L-NPC inverters have higher reliability than 3L-ANPC inverters for device short failure.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2011.2143430</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2012-02, Vol.27 (2), p.519-533
issn 0885-8993
1941-0107
language eng
recordid cdi_crossref_primary_10_1109_TPEL_2011_2143430
source IEEE Electronic Library (IEL)
subjects Active NPC (ANPC)
Capacitors
Design
Devices
Electric power
Electric power generation
electrical drives
Electrical equipment
Electronics
Failure
Failure analysis
Fault tolerance
fault tolerant
Fault tolerant systems
high power
Inverters
Modulation
multilevel inverter
reliability
Robustness
Simulation
Strategy
Switches
title Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Design%20of%20Active%20NPC%20(ANPC)%20Inverters%20for%20Fault-Tolerant%20Operation%20of%20High-Power%20Electrical%20Drives&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Jun%20Li&rft.date=2012-02-01&rft.volume=27&rft.issue=2&rft.spage=519&rft.epage=533&rft.pages=519-533&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2011.2143430&rft_dat=%3Cproquest_RIE%3E3470842411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616175359&rft_id=info:pmid/&rft_ieee_id=5751703&rfr_iscdi=true