Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives
Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2012-02, Vol.27 (2), p.519-533 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 533 |
---|---|
container_issue | 2 |
container_start_page | 519 |
container_title | IEEE transactions on power electronics |
container_volume | 27 |
creator | Jun Li Huang, A. Q. Zhigang Liang Bhattacharya, S. |
description | Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditions, and proposes the fault-tolerant strategies to enable continuous operating of the inverters and drive systems under single and multiple device open- and short-failure conditions. Therefore, the reliability and robustness of the electrical drives are greatly improved. Moreover, the proposed solution adds no additional components to standard 3L-ANPC inverters; thus, the cost for robust operation of drives is lower. Simulation and experiment results are provided for verification. Furthermore, a comprehensive comparison for the reliability function of 3L-ANPC and 3L-NPC inverters is presented. The results show that 3L-ANPC inverters have higher reliability than 3L-NPC inverters when a derating is allowed for the drive system under fault-tolerant operation. If a derated operation is not allowed, the two inverters have similar reliability for device open failure, while 3L-NPC inverters have higher reliability than 3L-ANPC inverters for device short failure. |
doi_str_mv | 10.1109/TPEL.2011.2143430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPEL_2011_2143430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5751703</ieee_id><sourcerecordid>3470842411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-926cfe6f4f2e8f48e8d73082d6eb7d757bc2c4d3e213b5411265ad68ca375033</originalsourceid><addsrcrecordid>eNpdkUFLAzEQhYMoWKs_QLwEvNTD1kyy2WSPpbYqFO2h9yXNzmpk3dRkq_jvTW3xIAPzLt97DPMIuQQ2BmDl7Wo5W4w5AxhzyEUu2BEZQJlDxoCpYzJgWstMl6U4JWcxvjEGuWQwIH7SmfY7ukhNV9M7jO6lo76hE9u7T6RPyykdTdK-oY_dJ4YeQ6SND3Rutm2frXyLwXQ9fd4k7Z3_9T64l9ds6b8w0FmLtg_OmpbehRQYz8lJY9qIFwcdktV8tpo-ZIvn-8fpZJFZwYs-K3lhGyyavOGom1yjrpVgmtcFrlWtpFpbbvNaIAexljkAL6SpC22NUJIJMSSjfewm-I8txr56d9Fi25oO_TZWUCgQQqtSJvT6H_rmtyF9ZUelUVLIMlGwp2zwMQZsqk1w7yZ8V8CqXQPVroFq10B1aCB5rvYeh4h_vFQSVDrxBw8XgDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616175359</pqid></control><display><type>article</type><title>Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives</title><source>IEEE Electronic Library (IEL)</source><creator>Jun Li ; Huang, A. Q. ; Zhigang Liang ; Bhattacharya, S.</creator><creatorcontrib>Jun Li ; Huang, A. Q. ; Zhigang Liang ; Bhattacharya, S.</creatorcontrib><description>Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditions, and proposes the fault-tolerant strategies to enable continuous operating of the inverters and drive systems under single and multiple device open- and short-failure conditions. Therefore, the reliability and robustness of the electrical drives are greatly improved. Moreover, the proposed solution adds no additional components to standard 3L-ANPC inverters; thus, the cost for robust operation of drives is lower. Simulation and experiment results are provided for verification. Furthermore, a comprehensive comparison for the reliability function of 3L-ANPC and 3L-NPC inverters is presented. The results show that 3L-ANPC inverters have higher reliability than 3L-NPC inverters when a derating is allowed for the drive system under fault-tolerant operation. If a derated operation is not allowed, the two inverters have similar reliability for device open failure, while 3L-NPC inverters have higher reliability than 3L-ANPC inverters for device short failure.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2011.2143430</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active NPC (ANPC) ; Capacitors ; Design ; Devices ; Electric power ; Electric power generation ; electrical drives ; Electrical equipment ; Electronics ; Failure ; Failure analysis ; Fault tolerance ; fault tolerant ; Fault tolerant systems ; high power ; Inverters ; Modulation ; multilevel inverter ; reliability ; Robustness ; Simulation ; Strategy ; Switches</subject><ispartof>IEEE transactions on power electronics, 2012-02, Vol.27 (2), p.519-533</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-926cfe6f4f2e8f48e8d73082d6eb7d757bc2c4d3e213b5411265ad68ca375033</citedby><cites>FETCH-LOGICAL-c326t-926cfe6f4f2e8f48e8d73082d6eb7d757bc2c4d3e213b5411265ad68ca375033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5751703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5751703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jun Li</creatorcontrib><creatorcontrib>Huang, A. Q.</creatorcontrib><creatorcontrib>Zhigang Liang</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><title>Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditions, and proposes the fault-tolerant strategies to enable continuous operating of the inverters and drive systems under single and multiple device open- and short-failure conditions. Therefore, the reliability and robustness of the electrical drives are greatly improved. Moreover, the proposed solution adds no additional components to standard 3L-ANPC inverters; thus, the cost for robust operation of drives is lower. Simulation and experiment results are provided for verification. Furthermore, a comprehensive comparison for the reliability function of 3L-ANPC and 3L-NPC inverters is presented. The results show that 3L-ANPC inverters have higher reliability than 3L-NPC inverters when a derating is allowed for the drive system under fault-tolerant operation. If a derated operation is not allowed, the two inverters have similar reliability for device open failure, while 3L-NPC inverters have higher reliability than 3L-ANPC inverters for device short failure.</description><subject>Active NPC (ANPC)</subject><subject>Capacitors</subject><subject>Design</subject><subject>Devices</subject><subject>Electric power</subject><subject>Electric power generation</subject><subject>electrical drives</subject><subject>Electrical equipment</subject><subject>Electronics</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Fault tolerance</subject><subject>fault tolerant</subject><subject>Fault tolerant systems</subject><subject>high power</subject><subject>Inverters</subject><subject>Modulation</subject><subject>multilevel inverter</subject><subject>reliability</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Strategy</subject><subject>Switches</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFLAzEQhYMoWKs_QLwEvNTD1kyy2WSPpbYqFO2h9yXNzmpk3dRkq_jvTW3xIAPzLt97DPMIuQQ2BmDl7Wo5W4w5AxhzyEUu2BEZQJlDxoCpYzJgWstMl6U4JWcxvjEGuWQwIH7SmfY7ukhNV9M7jO6lo76hE9u7T6RPyykdTdK-oY_dJ4YeQ6SND3Rutm2frXyLwXQ9fd4k7Z3_9T64l9ds6b8w0FmLtg_OmpbehRQYz8lJY9qIFwcdktV8tpo-ZIvn-8fpZJFZwYs-K3lhGyyavOGom1yjrpVgmtcFrlWtpFpbbvNaIAexljkAL6SpC22NUJIJMSSjfewm-I8txr56d9Fi25oO_TZWUCgQQqtSJvT6H_rmtyF9ZUelUVLIMlGwp2zwMQZsqk1w7yZ8V8CqXQPVroFq10B1aCB5rvYeh4h_vFQSVDrxBw8XgDM</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Jun Li</creator><creator>Huang, A. Q.</creator><creator>Zhigang Liang</creator><creator>Bhattacharya, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20120201</creationdate><title>Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives</title><author>Jun Li ; Huang, A. Q. ; Zhigang Liang ; Bhattacharya, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-926cfe6f4f2e8f48e8d73082d6eb7d757bc2c4d3e213b5411265ad68ca375033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active NPC (ANPC)</topic><topic>Capacitors</topic><topic>Design</topic><topic>Devices</topic><topic>Electric power</topic><topic>Electric power generation</topic><topic>electrical drives</topic><topic>Electrical equipment</topic><topic>Electronics</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Fault tolerance</topic><topic>fault tolerant</topic><topic>Fault tolerant systems</topic><topic>high power</topic><topic>Inverters</topic><topic>Modulation</topic><topic>multilevel inverter</topic><topic>reliability</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Strategy</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun Li</creatorcontrib><creatorcontrib>Huang, A. Q.</creatorcontrib><creatorcontrib>Zhigang Liang</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun Li</au><au>Huang, A. Q.</au><au>Zhigang Liang</au><au>Bhattacharya, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>27</volume><issue>2</issue><spage>519</spage><epage>533</epage><pages>519-533</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Compared with neutral-point-clamped (NPC) inverters, active NPC (ANPC) inverters enable a substantially increased output power and an improved performance at zero speed for high-power electrical drives. This paper analyzes the operation of three-level (3L) ANPC inverters under device failure conditions, and proposes the fault-tolerant strategies to enable continuous operating of the inverters and drive systems under single and multiple device open- and short-failure conditions. Therefore, the reliability and robustness of the electrical drives are greatly improved. Moreover, the proposed solution adds no additional components to standard 3L-ANPC inverters; thus, the cost for robust operation of drives is lower. Simulation and experiment results are provided for verification. Furthermore, a comprehensive comparison for the reliability function of 3L-ANPC and 3L-NPC inverters is presented. The results show that 3L-ANPC inverters have higher reliability than 3L-NPC inverters when a derating is allowed for the drive system under fault-tolerant operation. If a derated operation is not allowed, the two inverters have similar reliability for device open failure, while 3L-NPC inverters have higher reliability than 3L-ANPC inverters for device short failure.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2011.2143430</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2012-02, Vol.27 (2), p.519-533 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPEL_2011_2143430 |
source | IEEE Electronic Library (IEL) |
subjects | Active NPC (ANPC) Capacitors Design Devices Electric power Electric power generation electrical drives Electrical equipment Electronics Failure Failure analysis Fault tolerance fault tolerant Fault tolerant systems high power Inverters Modulation multilevel inverter reliability Robustness Simulation Strategy Switches |
title | Analysis and Design of Active NPC (ANPC) Inverters for Fault-Tolerant Operation of High-Power Electrical Drives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Design%20of%20Active%20NPC%20(ANPC)%20Inverters%20for%20Fault-Tolerant%20Operation%20of%20High-Power%20Electrical%20Drives&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Jun%20Li&rft.date=2012-02-01&rft.volume=27&rft.issue=2&rft.spage=519&rft.epage=533&rft.pages=519-533&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2011.2143430&rft_dat=%3Cproquest_RIE%3E3470842411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616175359&rft_id=info:pmid/&rft_ieee_id=5751703&rfr_iscdi=true |