Local Congestion Avoidance in Network-on-Chip

Network-on-Chip (NoC) has been made the communication infrastructure for many-core architecture. NoC are subject to congestion, which is claimed to be avoided by many researchers. However, there is no completely understanding of congestion in literature, which hinders its solution. Toward this direc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2016-07, Vol.27 (7), p.2062-2073
Hauptverfasser: Minghua Tang, Xiaola Lin, Palesi, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2073
container_issue 7
container_start_page 2062
container_title IEEE transactions on parallel and distributed systems
container_volume 27
creator Minghua Tang
Xiaola Lin
Palesi, Maurizio
description Network-on-Chip (NoC) has been made the communication infrastructure for many-core architecture. NoC are subject to congestion, which is claimed to be avoided by many researchers. However, there is no completely understanding of congestion in literature, which hinders its solution. Toward this direction, we firstly carry out study on congestion in this paper. We find that congestion usually occurs at a portion of nodes in a local network region. Moreover, local congestion will significantly decrease system performance and mostly impact some particular communication pairs. Then we attempt to solve local congestion by addressing different local region size, based on Divide-Conquer approach and routing pressure. It avoids congestion in every local region by keeping routing pressure of every local region minimum. Using different local region size will create different routings. Our study shows that the local region size is closely related with the routing performance. When local region size is 5 × 5 the optimal routing performance of large size network could be achieved.
doi_str_mv 10.1109/TPDS.2015.2474375
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPDS_2015_2474375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7229336</ieee_id><sourcerecordid>1825499423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c3b79d6b2318f66baa7479e192f374470c7c23301c0289e1d8972020570c02e43</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsfQLwsePGSmpkkm-RY1r9QVLCewzbNaup2Uzet4rc3peLBy8ww8-bx-BFyCmwEwMzl9OnqeYQM5AiFElzJPTIAKTVF0Hw_z0xIahDMITlKacEYCMnEgNBJdHVbVLF79WkdYleMP2OY153zReiKB7_-iv07jR2t3sLqmBw0dZv8yW8fkpeb62l1RyePt_fVeEIdN7jOdabMvJwhB92U5ayulVDGg8GGKyEUc8oh5wwcQ533c20UMmQyXxh6wYfkYue76uPHJgezy5Ccb9u683GTLGiUwhiRTYbk_J90ETd9l9NZUKY0QkuErIKdyvUxpd43dtWHZd1_W2B2C9BuAdotQPsLMP-c7X6C9_5PrxAN5yX_Aad8aIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796948521</pqid></control><display><type>article</type><title>Local Congestion Avoidance in Network-on-Chip</title><source>IEEE Electronic Library (IEL)</source><creator>Minghua Tang ; Xiaola Lin ; Palesi, Maurizio</creator><creatorcontrib>Minghua Tang ; Xiaola Lin ; Palesi, Maurizio</creatorcontrib><description>Network-on-Chip (NoC) has been made the communication infrastructure for many-core architecture. NoC are subject to congestion, which is claimed to be avoided by many researchers. However, there is no completely understanding of congestion in literature, which hinders its solution. Toward this direction, we firstly carry out study on congestion in this paper. We find that congestion usually occurs at a portion of nodes in a local network region. Moreover, local congestion will significantly decrease system performance and mostly impact some particular communication pairs. Then we attempt to solve local congestion by addressing different local region size, based on Divide-Conquer approach and routing pressure. It avoids congestion in every local region by keeping routing pressure of every local region minimum. Using different local region size will create different routings. Our study shows that the local region size is closely related with the routing performance. When local region size is 5 × 5 the optimal routing performance of large size network could be achieved.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2015.2474375</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithm design and analysis ; Avoidance ; Communication systems ; Computer networks ; Congestion ; Delays ; Divide- Conquer ; Infrastructure ; local congestion ; Network-on-Chip ; Networks ; Noise measurement ; Optimization ; Routing ; Routing (telecommunications) ; routing algorithm ; routing pressure ; Throughput ; Topology</subject><ispartof>IEEE transactions on parallel and distributed systems, 2016-07, Vol.27 (7), p.2062-2073</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c3b79d6b2318f66baa7479e192f374470c7c23301c0289e1d8972020570c02e43</citedby><cites>FETCH-LOGICAL-c392t-c3b79d6b2318f66baa7479e192f374470c7c23301c0289e1d8972020570c02e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7229336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7229336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Minghua Tang</creatorcontrib><creatorcontrib>Xiaola Lin</creatorcontrib><creatorcontrib>Palesi, Maurizio</creatorcontrib><title>Local Congestion Avoidance in Network-on-Chip</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Network-on-Chip (NoC) has been made the communication infrastructure for many-core architecture. NoC are subject to congestion, which is claimed to be avoided by many researchers. However, there is no completely understanding of congestion in literature, which hinders its solution. Toward this direction, we firstly carry out study on congestion in this paper. We find that congestion usually occurs at a portion of nodes in a local network region. Moreover, local congestion will significantly decrease system performance and mostly impact some particular communication pairs. Then we attempt to solve local congestion by addressing different local region size, based on Divide-Conquer approach and routing pressure. It avoids congestion in every local region by keeping routing pressure of every local region minimum. Using different local region size will create different routings. Our study shows that the local region size is closely related with the routing performance. When local region size is 5 × 5 the optimal routing performance of large size network could be achieved.</description><subject>Adaptation models</subject><subject>Algorithm design and analysis</subject><subject>Avoidance</subject><subject>Communication systems</subject><subject>Computer networks</subject><subject>Congestion</subject><subject>Delays</subject><subject>Divide- Conquer</subject><subject>Infrastructure</subject><subject>local congestion</subject><subject>Network-on-Chip</subject><subject>Networks</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Routing</subject><subject>Routing (telecommunications)</subject><subject>routing algorithm</subject><subject>routing pressure</subject><subject>Throughput</subject><subject>Topology</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxYMoWKsfQLwsePGSmpkkm-RY1r9QVLCewzbNaup2Uzet4rc3peLBy8ww8-bx-BFyCmwEwMzl9OnqeYQM5AiFElzJPTIAKTVF0Hw_z0xIahDMITlKacEYCMnEgNBJdHVbVLF79WkdYleMP2OY153zReiKB7_-iv07jR2t3sLqmBw0dZv8yW8fkpeb62l1RyePt_fVeEIdN7jOdabMvJwhB92U5ayulVDGg8GGKyEUc8oh5wwcQ533c20UMmQyXxh6wYfkYue76uPHJgezy5Ccb9u683GTLGiUwhiRTYbk_J90ETd9l9NZUKY0QkuErIKdyvUxpd43dtWHZd1_W2B2C9BuAdotQPsLMP-c7X6C9_5PrxAN5yX_Aad8aIA</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Minghua Tang</creator><creator>Xiaola Lin</creator><creator>Palesi, Maurizio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160701</creationdate><title>Local Congestion Avoidance in Network-on-Chip</title><author>Minghua Tang ; Xiaola Lin ; Palesi, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c3b79d6b2318f66baa7479e192f374470c7c23301c0289e1d8972020570c02e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>Algorithm design and analysis</topic><topic>Avoidance</topic><topic>Communication systems</topic><topic>Computer networks</topic><topic>Congestion</topic><topic>Delays</topic><topic>Divide- Conquer</topic><topic>Infrastructure</topic><topic>local congestion</topic><topic>Network-on-Chip</topic><topic>Networks</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Routing</topic><topic>Routing (telecommunications)</topic><topic>routing algorithm</topic><topic>routing pressure</topic><topic>Throughput</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minghua Tang</creatorcontrib><creatorcontrib>Xiaola Lin</creatorcontrib><creatorcontrib>Palesi, Maurizio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minghua Tang</au><au>Xiaola Lin</au><au>Palesi, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Congestion Avoidance in Network-on-Chip</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>27</volume><issue>7</issue><spage>2062</spage><epage>2073</epage><pages>2062-2073</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Network-on-Chip (NoC) has been made the communication infrastructure for many-core architecture. NoC are subject to congestion, which is claimed to be avoided by many researchers. However, there is no completely understanding of congestion in literature, which hinders its solution. Toward this direction, we firstly carry out study on congestion in this paper. We find that congestion usually occurs at a portion of nodes in a local network region. Moreover, local congestion will significantly decrease system performance and mostly impact some particular communication pairs. Then we attempt to solve local congestion by addressing different local region size, based on Divide-Conquer approach and routing pressure. It avoids congestion in every local region by keeping routing pressure of every local region minimum. Using different local region size will create different routings. Our study shows that the local region size is closely related with the routing performance. When local region size is 5 × 5 the optimal routing performance of large size network could be achieved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2015.2474375</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2016-07, Vol.27 (7), p.2062-2073
issn 1045-9219
1558-2183
language eng
recordid cdi_crossref_primary_10_1109_TPDS_2015_2474375
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithm design and analysis
Avoidance
Communication systems
Computer networks
Congestion
Delays
Divide- Conquer
Infrastructure
local congestion
Network-on-Chip
Networks
Noise measurement
Optimization
Routing
Routing (telecommunications)
routing algorithm
routing pressure
Throughput
Topology
title Local Congestion Avoidance in Network-on-Chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Congestion%20Avoidance%20in%20Network-on-Chip&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Minghua%20Tang&rft.date=2016-07-01&rft.volume=27&rft.issue=7&rft.spage=2062&rft.epage=2073&rft.pages=2062-2073&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2015.2474375&rft_dat=%3Cproquest_RIE%3E1825499423%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1796948521&rft_id=info:pmid/&rft_ieee_id=7229336&rfr_iscdi=true