Data Collection in Multi-Application Sharing Wireless Sensor Networks
Data sharing for data collection among multiple applications is an efficient way to reduce communication cost for Wireless Sensor Networks (WSNs). This paper is the first work to introduce the interval data sharing problem which is to investigate how to transmit as less data as possible over the net...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2015-02, Vol.26 (2), p.403-412 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 2 |
container_start_page | 403 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 26 |
creator | Gao, Hong Fang, Xiaolin Li, Jianzhong Li, Yingshu |
description | Data sharing for data collection among multiple applications is an efficient way to reduce communication cost for Wireless Sensor Networks (WSNs). This paper is the first work to introduce the interval data sharing problem which is to investigate how to transmit as less data as possible over the network, and meanwhile the transmitted data satisfies the requirements of all the applications. Different from current studies where each application requires a single data sampling during each task, we study the problem where each application requires a continuous interval of data sampling in each task. The proposed problem is a nonlinear nonconvex optimization problem. In order to lower the high complexity for solving a nonlinear nonconvex optimization problem in resource restricted WSNs, a 2-factor approximation algorithm whose time complexity is O(n 2 ) and memory complexity is O(n) is provided. A special instance of this problem is also analyzed. This special instance can be solved with a dynamic programming algorithm in polynomial time, which gives an optimal result in O(n 2 ) time complexity and O(n) memory complexity. Three online algorithms are provided to process the continually coming tasks. Both the theoretical analysis and simulation results demonstrate the effectiveness of the proposed algorithms. |
doi_str_mv | 10.1109/TPDS.2013.289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPDS_2013_289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6671566</ieee_id><sourcerecordid>3620616341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-2ba962e3883c47cb69a2441b260ff7c9a75c9f49aa76752326685c883ae607c33</originalsourceid><addsrcrecordid>eNpd0ElLAzEUwPEgCtbq0ZOXAS9epmZfjqXWBeoCrXgMachoajoZkynitze14sFTHuHH4_EH4BTBEUJQXS6eruYjDBEZYan2wAAxJmuMJNkvM6SsVhipQ3CU8wpCRBmkAzC9Mr2pJjEEZ3sf28q31f0m9L4ed13w1vx8zt9M8u1r9eKTCy7nau7aHFP14PrPmN7zMThoTMju5Pcdgufr6WJyW88eb-4m41ltiaR9jZdGceyIlMRSYZdcGUwpWmIOm0ZYZQSzqqHKGMEFwwRzLpkt2jgOhSVkCC52e7sUPzYu93rts3UhmNbFTdZIIg4JUooVev6PruImteU6jTjHUKjiiqp3yqaYc3KN7pJfm_SlEdTbqHobVW-j6hK1-LOd9865P8u5QIxz8g0J7XDr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662079319</pqid></control><display><type>article</type><title>Data Collection in Multi-Application Sharing Wireless Sensor Networks</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Gao, Hong ; Fang, Xiaolin ; Li, Jianzhong ; Li, Yingshu</creator><creatorcontrib>Gao, Hong ; Fang, Xiaolin ; Li, Jianzhong ; Li, Yingshu</creatorcontrib><description>Data sharing for data collection among multiple applications is an efficient way to reduce communication cost for Wireless Sensor Networks (WSNs). This paper is the first work to introduce the interval data sharing problem which is to investigate how to transmit as less data as possible over the network, and meanwhile the transmitted data satisfies the requirements of all the applications. Different from current studies where each application requires a single data sampling during each task, we study the problem where each application requires a continuous interval of data sampling in each task. The proposed problem is a nonlinear nonconvex optimization problem. In order to lower the high complexity for solving a nonlinear nonconvex optimization problem in resource restricted WSNs, a 2-factor approximation algorithm whose time complexity is O(n 2 ) and memory complexity is O(n) is provided. A special instance of this problem is also analyzed. This special instance can be solved with a dynamic programming algorithm in polynomial time, which gives an optimal result in O(n 2 ) time complexity and O(n) memory complexity. Three online algorithms are provided to process the continually coming tasks. Both the theoretical analysis and simulation results demonstrate the effectiveness of the proposed algorithms.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2013.289</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Approximation methods ; Complexity ; Data collection ; Data retrieval ; data sharing ; Dynamic programming ; Heuristic algorithms ; Information sharing ; Intervals ; multi-application ; Optimization ; Remote sensors ; Tasks ; Time complexity ; Wireless networks ; wireless sensor network ; Wireless sensor networks</subject><ispartof>IEEE transactions on parallel and distributed systems, 2015-02, Vol.26 (2), p.403-412</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-2ba962e3883c47cb69a2441b260ff7c9a75c9f49aa76752326685c883ae607c33</citedby><cites>FETCH-LOGICAL-c384t-2ba962e3883c47cb69a2441b260ff7c9a75c9f49aa76752326685c883ae607c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6671566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6671566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Fang, Xiaolin</creatorcontrib><creatorcontrib>Li, Jianzhong</creatorcontrib><creatorcontrib>Li, Yingshu</creatorcontrib><title>Data Collection in Multi-Application Sharing Wireless Sensor Networks</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Data sharing for data collection among multiple applications is an efficient way to reduce communication cost for Wireless Sensor Networks (WSNs). This paper is the first work to introduce the interval data sharing problem which is to investigate how to transmit as less data as possible over the network, and meanwhile the transmitted data satisfies the requirements of all the applications. Different from current studies where each application requires a single data sampling during each task, we study the problem where each application requires a continuous interval of data sampling in each task. The proposed problem is a nonlinear nonconvex optimization problem. In order to lower the high complexity for solving a nonlinear nonconvex optimization problem in resource restricted WSNs, a 2-factor approximation algorithm whose time complexity is O(n 2 ) and memory complexity is O(n) is provided. A special instance of this problem is also analyzed. This special instance can be solved with a dynamic programming algorithm in polynomial time, which gives an optimal result in O(n 2 ) time complexity and O(n) memory complexity. Three online algorithms are provided to process the continually coming tasks. Both the theoretical analysis and simulation results demonstrate the effectiveness of the proposed algorithms.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Complexity</subject><subject>Data collection</subject><subject>Data retrieval</subject><subject>data sharing</subject><subject>Dynamic programming</subject><subject>Heuristic algorithms</subject><subject>Information sharing</subject><subject>Intervals</subject><subject>multi-application</subject><subject>Optimization</subject><subject>Remote sensors</subject><subject>Tasks</subject><subject>Time complexity</subject><subject>Wireless networks</subject><subject>wireless sensor network</subject><subject>Wireless sensor networks</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0ElLAzEUwPEgCtbq0ZOXAS9epmZfjqXWBeoCrXgMachoajoZkynitze14sFTHuHH4_EH4BTBEUJQXS6eruYjDBEZYan2wAAxJmuMJNkvM6SsVhipQ3CU8wpCRBmkAzC9Mr2pJjEEZ3sf28q31f0m9L4ed13w1vx8zt9M8u1r9eKTCy7nau7aHFP14PrPmN7zMThoTMju5Pcdgufr6WJyW88eb-4m41ltiaR9jZdGceyIlMRSYZdcGUwpWmIOm0ZYZQSzqqHKGMEFwwRzLpkt2jgOhSVkCC52e7sUPzYu93rts3UhmNbFTdZIIg4JUooVev6PruImteU6jTjHUKjiiqp3yqaYc3KN7pJfm_SlEdTbqHobVW-j6hK1-LOd9865P8u5QIxz8g0J7XDr</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Gao, Hong</creator><creator>Fang, Xiaolin</creator><creator>Li, Jianzhong</creator><creator>Li, Yingshu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201502</creationdate><title>Data Collection in Multi-Application Sharing Wireless Sensor Networks</title><author>Gao, Hong ; Fang, Xiaolin ; Li, Jianzhong ; Li, Yingshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-2ba962e3883c47cb69a2441b260ff7c9a75c9f49aa76752326685c883ae607c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Complexity</topic><topic>Data collection</topic><topic>Data retrieval</topic><topic>data sharing</topic><topic>Dynamic programming</topic><topic>Heuristic algorithms</topic><topic>Information sharing</topic><topic>Intervals</topic><topic>multi-application</topic><topic>Optimization</topic><topic>Remote sensors</topic><topic>Tasks</topic><topic>Time complexity</topic><topic>Wireless networks</topic><topic>wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Fang, Xiaolin</creatorcontrib><creatorcontrib>Li, Jianzhong</creatorcontrib><creatorcontrib>Li, Yingshu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Hong</au><au>Fang, Xiaolin</au><au>Li, Jianzhong</au><au>Li, Yingshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Collection in Multi-Application Sharing Wireless Sensor Networks</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2015-02</date><risdate>2015</risdate><volume>26</volume><issue>2</issue><spage>403</spage><epage>412</epage><pages>403-412</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Data sharing for data collection among multiple applications is an efficient way to reduce communication cost for Wireless Sensor Networks (WSNs). This paper is the first work to introduce the interval data sharing problem which is to investigate how to transmit as less data as possible over the network, and meanwhile the transmitted data satisfies the requirements of all the applications. Different from current studies where each application requires a single data sampling during each task, we study the problem where each application requires a continuous interval of data sampling in each task. The proposed problem is a nonlinear nonconvex optimization problem. In order to lower the high complexity for solving a nonlinear nonconvex optimization problem in resource restricted WSNs, a 2-factor approximation algorithm whose time complexity is O(n 2 ) and memory complexity is O(n) is provided. A special instance of this problem is also analyzed. This special instance can be solved with a dynamic programming algorithm in polynomial time, which gives an optimal result in O(n 2 ) time complexity and O(n) memory complexity. Three online algorithms are provided to process the continually coming tasks. Both the theoretical analysis and simulation results demonstrate the effectiveness of the proposed algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2013.289</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2015-02, Vol.26 (2), p.403-412 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPDS_2013_289 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Algorithms Approximation algorithms Approximation methods Complexity Data collection Data retrieval data sharing Dynamic programming Heuristic algorithms Information sharing Intervals multi-application Optimization Remote sensors Tasks Time complexity Wireless networks wireless sensor network Wireless sensor networks |
title | Data Collection in Multi-Application Sharing Wireless Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Collection%20in%20Multi-Application%20Sharing%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Gao,%20Hong&rft.date=2015-02&rft.volume=26&rft.issue=2&rft.spage=403&rft.epage=412&rft.pages=403-412&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2013.289&rft_dat=%3Cproquest_RIE%3E3620616341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662079319&rft_id=info:pmid/&rft_ieee_id=6671566&rfr_iscdi=true |