Strategies for Energy-Efficient Resource Management of Hybrid Programming Models

Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2013-01, Vol.24 (1), p.144-157
Hauptverfasser: Dong Li, de Supinski, B. R., Schulz, M., Nikolopoulos, D. S., Cameron, K. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 1
container_start_page 144
container_title IEEE transactions on parallel and distributed systems
container_volume 24
creator Dong Li
de Supinski, B. R.
Schulz, M.
Nikolopoulos, D. S.
Cameron, K. W.
description Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.
doi_str_mv 10.1109/TPDS.2012.95
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPDS_2012_95</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6171173</ieee_id><sourcerecordid>1718951173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-d0908095d87af17de866925e958bbc9a1255c835e5e50d4077c513de3d96bd313</originalsourceid><addsrcrecordid>eNqF0c1PwyAYBvDGaKJOb968NHrxYCcvLS0czZzOZMbFjzNh8LayrEWhO-y_l2bGgxfDAUJ-IS_PkyRnQMYARNy8Le5ex5QAHQu2lxwBYzyjwPP9eCYFywQFcZgch7AiBApGiqNk8dp71WNjMaS18-m0Q99ss2ldW22x69MXDG7jNaZPqlMNtsOdq9PZdumtSRfeNV61re2a9MkZXIeT5KBW64CnP_soeb-fvk1m2fz54XFyO890wUmfGSIIJ4IZXqkaKoO8LAVlKBhfLrVQQBnTPGcYFzEFqSrNIDeYG1EuTQ75KLnYvetCb2XQtkf9oV3Xoe4lVHlRkiqiqx369O5rg6GXrQ0a12vVoduE6IALBpH_TynPq5gi55Fe_qGrGFEXfxsVhUrEcGlU1zulvQvBYy0_vW2V30ogcqhLDnXJoS4pWOTnO24R8ZeWccJhum9ZfI4S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221790142</pqid></control><display><type>article</type><title>Strategies for Energy-Efficient Resource Management of Hybrid Programming Models</title><source>IEEE Electronic Library (IEL)</source><creator>Dong Li ; de Supinski, B. R. ; Schulz, M. ; Nikolopoulos, D. S. ; Cameron, K. W.</creator><creatorcontrib>Dong Li ; de Supinski, B. R. ; Schulz, M. ; Nikolopoulos, D. S. ; Cameron, K. W. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2012.95</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational modeling ; Concurrency ; Concurrent computing ; Discrete cosine transforms ; dynamic concurrency throttling ; Dynamic programming ; dynamic voltage and frequency scaling ; Dynamical systems ; Dynamics ; Electric potential ; Energy efficiency ; hybrid parallel programming models ; MATHEMATICS AND COMPUTING ; Message passing ; Multicore processing ; Optimization ; Power management ; Product development ; Product introduction ; Programming ; Studies ; Time frequency analysis</subject><ispartof>IEEE transactions on parallel and distributed systems, 2013-01, Vol.24 (1), p.144-157</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-d0908095d87af17de866925e958bbc9a1255c835e5e50d4077c513de3d96bd313</citedby><cites>FETCH-LOGICAL-c480t-d0908095d87af17de866925e958bbc9a1255c835e5e50d4077c513de3d96bd313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6171173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6171173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1734607$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong Li</creatorcontrib><creatorcontrib>de Supinski, B. R.</creatorcontrib><creatorcontrib>Schulz, M.</creatorcontrib><creatorcontrib>Nikolopoulos, D. S.</creatorcontrib><creatorcontrib>Cameron, K. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Strategies for Energy-Efficient Resource Management of Hybrid Programming Models</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Concurrency</subject><subject>Concurrent computing</subject><subject>Discrete cosine transforms</subject><subject>dynamic concurrency throttling</subject><subject>Dynamic programming</subject><subject>dynamic voltage and frequency scaling</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric potential</subject><subject>Energy efficiency</subject><subject>hybrid parallel programming models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Message passing</subject><subject>Multicore processing</subject><subject>Optimization</subject><subject>Power management</subject><subject>Product development</subject><subject>Product introduction</subject><subject>Programming</subject><subject>Studies</subject><subject>Time frequency analysis</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1PwyAYBvDGaKJOb968NHrxYCcvLS0czZzOZMbFjzNh8LayrEWhO-y_l2bGgxfDAUJ-IS_PkyRnQMYARNy8Le5ex5QAHQu2lxwBYzyjwPP9eCYFywQFcZgch7AiBApGiqNk8dp71WNjMaS18-m0Q99ss2ldW22x69MXDG7jNaZPqlMNtsOdq9PZdumtSRfeNV61re2a9MkZXIeT5KBW64CnP_soeb-fvk1m2fz54XFyO890wUmfGSIIJ4IZXqkaKoO8LAVlKBhfLrVQQBnTPGcYFzEFqSrNIDeYG1EuTQ75KLnYvetCb2XQtkf9oV3Xoe4lVHlRkiqiqx369O5rg6GXrQ0a12vVoduE6IALBpH_TynPq5gi55Fe_qGrGFEXfxsVhUrEcGlU1zulvQvBYy0_vW2V30ogcqhLDnXJoS4pWOTnO24R8ZeWccJhum9ZfI4S</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Dong Li</creator><creator>de Supinski, B. R.</creator><creator>Schulz, M.</creator><creator>Nikolopoulos, D. S.</creator><creator>Cameron, K. W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>F28</scope><scope>FR3</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201301</creationdate><title>Strategies for Energy-Efficient Resource Management of Hybrid Programming Models</title><author>Dong Li ; de Supinski, B. R. ; Schulz, M. ; Nikolopoulos, D. S. ; Cameron, K. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-d0908095d87af17de866925e958bbc9a1255c835e5e50d4077c513de3d96bd313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Concurrency</topic><topic>Concurrent computing</topic><topic>Discrete cosine transforms</topic><topic>dynamic concurrency throttling</topic><topic>Dynamic programming</topic><topic>dynamic voltage and frequency scaling</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric potential</topic><topic>Energy efficiency</topic><topic>hybrid parallel programming models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Message passing</topic><topic>Multicore processing</topic><topic>Optimization</topic><topic>Power management</topic><topic>Product development</topic><topic>Product introduction</topic><topic>Programming</topic><topic>Studies</topic><topic>Time frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong Li</creatorcontrib><creatorcontrib>de Supinski, B. R.</creatorcontrib><creatorcontrib>Schulz, M.</creatorcontrib><creatorcontrib>Nikolopoulos, D. S.</creatorcontrib><creatorcontrib>Cameron, K. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong Li</au><au>de Supinski, B. R.</au><au>Schulz, M.</au><au>Nikolopoulos, D. S.</au><au>Cameron, K. W.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for Energy-Efficient Resource Management of Hybrid Programming Models</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2013-01</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>144</spage><epage>157</epage><pages>144-157</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2012.95</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2013-01, Vol.24 (1), p.144-157
issn 1045-9219
1558-2183
language eng
recordid cdi_crossref_primary_10_1109_TPDS_2012_95
source IEEE Electronic Library (IEL)
subjects Algorithms
Computational modeling
Concurrency
Concurrent computing
Discrete cosine transforms
dynamic concurrency throttling
Dynamic programming
dynamic voltage and frequency scaling
Dynamical systems
Dynamics
Electric potential
Energy efficiency
hybrid parallel programming models
MATHEMATICS AND COMPUTING
Message passing
Multicore processing
Optimization
Power management
Product development
Product introduction
Programming
Studies
Time frequency analysis
title Strategies for Energy-Efficient Resource Management of Hybrid Programming Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20Energy-Efficient%20Resource%20Management%20of%20Hybrid%20Programming%20Models&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Dong%20Li&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2013-01&rft.volume=24&rft.issue=1&rft.spage=144&rft.epage=157&rft.pages=144-157&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2012.95&rft_dat=%3Cproquest_RIE%3E1718951173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221790142&rft_id=info:pmid/&rft_ieee_id=6171173&rfr_iscdi=true