Strategies for Energy-Efficient Resource Management of Hybrid Programming Models
Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-contro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2013-01, Vol.24 (1), p.144-157 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 24 |
creator | Dong Li de Supinski, B. R. Schulz, M. Nikolopoulos, D. S. Cameron, K. W. |
description | Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss. |
doi_str_mv | 10.1109/TPDS.2012.95 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPDS_2012_95</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6171173</ieee_id><sourcerecordid>1718951173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-d0908095d87af17de866925e958bbc9a1255c835e5e50d4077c513de3d96bd313</originalsourceid><addsrcrecordid>eNqF0c1PwyAYBvDGaKJOb968NHrxYCcvLS0czZzOZMbFjzNh8LayrEWhO-y_l2bGgxfDAUJ-IS_PkyRnQMYARNy8Le5ex5QAHQu2lxwBYzyjwPP9eCYFywQFcZgch7AiBApGiqNk8dp71WNjMaS18-m0Q99ss2ldW22x69MXDG7jNaZPqlMNtsOdq9PZdumtSRfeNV61re2a9MkZXIeT5KBW64CnP_soeb-fvk1m2fz54XFyO890wUmfGSIIJ4IZXqkaKoO8LAVlKBhfLrVQQBnTPGcYFzEFqSrNIDeYG1EuTQ75KLnYvetCb2XQtkf9oV3Xoe4lVHlRkiqiqx369O5rg6GXrQ0a12vVoduE6IALBpH_TynPq5gi55Fe_qGrGFEXfxsVhUrEcGlU1zulvQvBYy0_vW2V30ogcqhLDnXJoS4pWOTnO24R8ZeWccJhum9ZfI4S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221790142</pqid></control><display><type>article</type><title>Strategies for Energy-Efficient Resource Management of Hybrid Programming Models</title><source>IEEE Electronic Library (IEL)</source><creator>Dong Li ; de Supinski, B. R. ; Schulz, M. ; Nikolopoulos, D. S. ; Cameron, K. W.</creator><creatorcontrib>Dong Li ; de Supinski, B. R. ; Schulz, M. ; Nikolopoulos, D. S. ; Cameron, K. W. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2012.95</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational modeling ; Concurrency ; Concurrent computing ; Discrete cosine transforms ; dynamic concurrency throttling ; Dynamic programming ; dynamic voltage and frequency scaling ; Dynamical systems ; Dynamics ; Electric potential ; Energy efficiency ; hybrid parallel programming models ; MATHEMATICS AND COMPUTING ; Message passing ; Multicore processing ; Optimization ; Power management ; Product development ; Product introduction ; Programming ; Studies ; Time frequency analysis</subject><ispartof>IEEE transactions on parallel and distributed systems, 2013-01, Vol.24 (1), p.144-157</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-d0908095d87af17de866925e958bbc9a1255c835e5e50d4077c513de3d96bd313</citedby><cites>FETCH-LOGICAL-c480t-d0908095d87af17de866925e958bbc9a1255c835e5e50d4077c513de3d96bd313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6171173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6171173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1734607$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong Li</creatorcontrib><creatorcontrib>de Supinski, B. R.</creatorcontrib><creatorcontrib>Schulz, M.</creatorcontrib><creatorcontrib>Nikolopoulos, D. S.</creatorcontrib><creatorcontrib>Cameron, K. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Strategies for Energy-Efficient Resource Management of Hybrid Programming Models</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Concurrency</subject><subject>Concurrent computing</subject><subject>Discrete cosine transforms</subject><subject>dynamic concurrency throttling</subject><subject>Dynamic programming</subject><subject>dynamic voltage and frequency scaling</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric potential</subject><subject>Energy efficiency</subject><subject>hybrid parallel programming models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Message passing</subject><subject>Multicore processing</subject><subject>Optimization</subject><subject>Power management</subject><subject>Product development</subject><subject>Product introduction</subject><subject>Programming</subject><subject>Studies</subject><subject>Time frequency analysis</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1PwyAYBvDGaKJOb968NHrxYCcvLS0czZzOZMbFjzNh8LayrEWhO-y_l2bGgxfDAUJ-IS_PkyRnQMYARNy8Le5ex5QAHQu2lxwBYzyjwPP9eCYFywQFcZgch7AiBApGiqNk8dp71WNjMaS18-m0Q99ss2ldW22x69MXDG7jNaZPqlMNtsOdq9PZdumtSRfeNV61re2a9MkZXIeT5KBW64CnP_soeb-fvk1m2fz54XFyO890wUmfGSIIJ4IZXqkaKoO8LAVlKBhfLrVQQBnTPGcYFzEFqSrNIDeYG1EuTQ75KLnYvetCb2XQtkf9oV3Xoe4lVHlRkiqiqx369O5rg6GXrQ0a12vVoduE6IALBpH_TynPq5gi55Fe_qGrGFEXfxsVhUrEcGlU1zulvQvBYy0_vW2V30ogcqhLDnXJoS4pWOTnO24R8ZeWccJhum9ZfI4S</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Dong Li</creator><creator>de Supinski, B. R.</creator><creator>Schulz, M.</creator><creator>Nikolopoulos, D. S.</creator><creator>Cameron, K. W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>F28</scope><scope>FR3</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201301</creationdate><title>Strategies for Energy-Efficient Resource Management of Hybrid Programming Models</title><author>Dong Li ; de Supinski, B. R. ; Schulz, M. ; Nikolopoulos, D. S. ; Cameron, K. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-d0908095d87af17de866925e958bbc9a1255c835e5e50d4077c513de3d96bd313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Concurrency</topic><topic>Concurrent computing</topic><topic>Discrete cosine transforms</topic><topic>dynamic concurrency throttling</topic><topic>Dynamic programming</topic><topic>dynamic voltage and frequency scaling</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric potential</topic><topic>Energy efficiency</topic><topic>hybrid parallel programming models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Message passing</topic><topic>Multicore processing</topic><topic>Optimization</topic><topic>Power management</topic><topic>Product development</topic><topic>Product introduction</topic><topic>Programming</topic><topic>Studies</topic><topic>Time frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong Li</creatorcontrib><creatorcontrib>de Supinski, B. R.</creatorcontrib><creatorcontrib>Schulz, M.</creatorcontrib><creatorcontrib>Nikolopoulos, D. S.</creatorcontrib><creatorcontrib>Cameron, K. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong Li</au><au>de Supinski, B. R.</au><au>Schulz, M.</au><au>Nikolopoulos, D. S.</au><au>Cameron, K. W.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for Energy-Efficient Resource Management of Hybrid Programming Models</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2013-01</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>144</spage><epage>157</epage><pages>144-157</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2012.95</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2013-01, Vol.24 (1), p.144-157 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPDS_2012_95 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computational modeling Concurrency Concurrent computing Discrete cosine transforms dynamic concurrency throttling Dynamic programming dynamic voltage and frequency scaling Dynamical systems Dynamics Electric potential Energy efficiency hybrid parallel programming models MATHEMATICS AND COMPUTING Message passing Multicore processing Optimization Power management Product development Product introduction Programming Studies Time frequency analysis |
title | Strategies for Energy-Efficient Resource Management of Hybrid Programming Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20Energy-Efficient%20Resource%20Management%20of%20Hybrid%20Programming%20Models&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Dong%20Li&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2013-01&rft.volume=24&rft.issue=1&rft.spage=144&rft.epage=157&rft.pages=144-157&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2012.95&rft_dat=%3Cproquest_RIE%3E1718951173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221790142&rft_id=info:pmid/&rft_ieee_id=6171173&rfr_iscdi=true |