Bounding the Impact of Unbounded Attacks in Stabilization
Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2012-03, Vol.23 (3), p.460-466 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 3 |
container_start_page | 460 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 23 |
creator | Dubois, S. Masuzawa, T. Tixeuil, S. |
description | Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context. |
doi_str_mv | 10.1109/TPDS.2011.158 |
format | Article |
fullrecord | <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPDS_2011_158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5871596</ieee_id><sourcerecordid>oai_HAL_hal_00934036v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-46cb80cd574b4945a6aa4a5eecb872b6c1d0be072426c8c795ad868955f5e54e3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqUwMrF4ZUi5S3yOPZbPVqoEUtvZchyHGtqkSgwS_HoSFXW60_s-d8PD2DXCBBH03ertcTlJAXGCpE7YCIlUkqLKTvsdBCU6RX3OLrruAwAFgRgxfd981WWo33nceD7f7a2LvKn4ui6Gwpd8GqN1nx0PNV9GW4Rt-LUxNPUlO6vstvNX_3PM1s9Pq4dZsnh9mT9MF4nLKI-JkK5Q4ErKRSG0ICutFZa87-M8LaTDEgoPeSpS6ZTLNdlSSaWJKvIkfDZmt4e_G7s1-zbsbPtjGhvMbLowQwagMwGZ_MaeTQ6sa5uua311PEAwgyMzODKDI9M76vmbAx-890eWVI6kZfYH4aBhMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bounding the Impact of Unbounded Attacks in Stabilization</title><source>IEEE Electronic Library (IEL)</source><creator>Dubois, S. ; Masuzawa, T. ; Tixeuil, S.</creator><creatorcontrib>Dubois, S. ; Masuzawa, T. ; Tixeuil, S.</creatorcontrib><description>Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2011.158</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Byzantine fault ; Computer Science ; Context ; Data Structures and Algorithms ; distributed algorithm ; Distributed, Parallel, and Cluster Computing ; Fault tolerance ; Networking and Internet Architecture ; Protocols ; Registers ; Schedules ; spanning tree construction ; stabilization ; Transient analysis ; Ubiquitous Computing ; Vegetation</subject><ispartof>IEEE transactions on parallel and distributed systems, 2012-03, Vol.23 (3), p.460-466</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-46cb80cd574b4945a6aa4a5eecb872b6c1d0be072426c8c795ad868955f5e54e3</citedby><cites>FETCH-LOGICAL-c357t-46cb80cd574b4945a6aa4a5eecb872b6c1d0be072426c8c795ad868955f5e54e3</cites><orcidid>0000-0003-2320-6178 ; 0000-0002-0948-7172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5871596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5871596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-00934036$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubois, S.</creatorcontrib><creatorcontrib>Masuzawa, T.</creatorcontrib><creatorcontrib>Tixeuil, S.</creatorcontrib><title>Bounding the Impact of Unbounded Attacks in Stabilization</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context.</description><subject>Byzantine fault</subject><subject>Computer Science</subject><subject>Context</subject><subject>Data Structures and Algorithms</subject><subject>distributed algorithm</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Fault tolerance</subject><subject>Networking and Internet Architecture</subject><subject>Protocols</subject><subject>Registers</subject><subject>Schedules</subject><subject>spanning tree construction</subject><subject>stabilization</subject><subject>Transient analysis</subject><subject>Ubiquitous Computing</subject><subject>Vegetation</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqUwMrF4ZUi5S3yOPZbPVqoEUtvZchyHGtqkSgwS_HoSFXW60_s-d8PD2DXCBBH03ertcTlJAXGCpE7YCIlUkqLKTvsdBCU6RX3OLrruAwAFgRgxfd981WWo33nceD7f7a2LvKn4ui6Gwpd8GqN1nx0PNV9GW4Rt-LUxNPUlO6vstvNX_3PM1s9Pq4dZsnh9mT9MF4nLKI-JkK5Q4ErKRSG0ICutFZa87-M8LaTDEgoPeSpS6ZTLNdlSSaWJKvIkfDZmt4e_G7s1-zbsbPtjGhvMbLowQwagMwGZ_MaeTQ6sa5uua311PEAwgyMzODKDI9M76vmbAx-890eWVI6kZfYH4aBhMw</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Dubois, S.</creator><creator>Masuzawa, T.</creator><creator>Tixeuil, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2320-6178</orcidid><orcidid>https://orcid.org/0000-0002-0948-7172</orcidid></search><sort><creationdate>201203</creationdate><title>Bounding the Impact of Unbounded Attacks in Stabilization</title><author>Dubois, S. ; Masuzawa, T. ; Tixeuil, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-46cb80cd574b4945a6aa4a5eecb872b6c1d0be072426c8c795ad868955f5e54e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Byzantine fault</topic><topic>Computer Science</topic><topic>Context</topic><topic>Data Structures and Algorithms</topic><topic>distributed algorithm</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Fault tolerance</topic><topic>Networking and Internet Architecture</topic><topic>Protocols</topic><topic>Registers</topic><topic>Schedules</topic><topic>spanning tree construction</topic><topic>stabilization</topic><topic>Transient analysis</topic><topic>Ubiquitous Computing</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubois, S.</creatorcontrib><creatorcontrib>Masuzawa, T.</creatorcontrib><creatorcontrib>Tixeuil, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dubois, S.</au><au>Masuzawa, T.</au><au>Tixeuil, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounding the Impact of Unbounded Attacks in Stabilization</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2012-03</date><risdate>2012</risdate><volume>23</volume><issue>3</issue><spage>460</spage><epage>466</epage><pages>460-466</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context.</abstract><pub>IEEE</pub><doi>10.1109/TPDS.2011.158</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2320-6178</orcidid><orcidid>https://orcid.org/0000-0002-0948-7172</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2012-03, Vol.23 (3), p.460-466 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPDS_2011_158 |
source | IEEE Electronic Library (IEL) |
subjects | Byzantine fault Computer Science Context Data Structures and Algorithms distributed algorithm Distributed, Parallel, and Cluster Computing Fault tolerance Networking and Internet Architecture Protocols Registers Schedules spanning tree construction stabilization Transient analysis Ubiquitous Computing Vegetation |
title | Bounding the Impact of Unbounded Attacks in Stabilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounding%20the%20Impact%20of%20Unbounded%20Attacks%20in%20Stabilization&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Dubois,%20S.&rft.date=2012-03&rft.volume=23&rft.issue=3&rft.spage=460&rft.epage=466&rft.pages=460-466&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2011.158&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_00934036v1%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5871596&rfr_iscdi=true |