Bounding the Impact of Unbounded Attacks in Stabilization

Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2012-03, Vol.23 (3), p.460-466
Hauptverfasser: Dubois, S., Masuzawa, T., Tixeuil, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 3
container_start_page 460
container_title IEEE transactions on parallel and distributed systems
container_volume 23
creator Dubois, S.
Masuzawa, T.
Tixeuil, S.
description Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context.
doi_str_mv 10.1109/TPDS.2011.158
format Article
fullrecord <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPDS_2011_158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5871596</ieee_id><sourcerecordid>oai_HAL_hal_00934036v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-46cb80cd574b4945a6aa4a5eecb872b6c1d0be072426c8c795ad868955f5e54e3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqUwMrF4ZUi5S3yOPZbPVqoEUtvZchyHGtqkSgwS_HoSFXW60_s-d8PD2DXCBBH03ertcTlJAXGCpE7YCIlUkqLKTvsdBCU6RX3OLrruAwAFgRgxfd981WWo33nceD7f7a2LvKn4ui6Gwpd8GqN1nx0PNV9GW4Rt-LUxNPUlO6vstvNX_3PM1s9Pq4dZsnh9mT9MF4nLKI-JkK5Q4ErKRSG0ICutFZa87-M8LaTDEgoPeSpS6ZTLNdlSSaWJKvIkfDZmt4e_G7s1-zbsbPtjGhvMbLowQwagMwGZ_MaeTQ6sa5uua311PEAwgyMzODKDI9M76vmbAx-890eWVI6kZfYH4aBhMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bounding the Impact of Unbounded Attacks in Stabilization</title><source>IEEE Electronic Library (IEL)</source><creator>Dubois, S. ; Masuzawa, T. ; Tixeuil, S.</creator><creatorcontrib>Dubois, S. ; Masuzawa, T. ; Tixeuil, S.</creatorcontrib><description>Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2011.158</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Byzantine fault ; Computer Science ; Context ; Data Structures and Algorithms ; distributed algorithm ; Distributed, Parallel, and Cluster Computing ; Fault tolerance ; Networking and Internet Architecture ; Protocols ; Registers ; Schedules ; spanning tree construction ; stabilization ; Transient analysis ; Ubiquitous Computing ; Vegetation</subject><ispartof>IEEE transactions on parallel and distributed systems, 2012-03, Vol.23 (3), p.460-466</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-46cb80cd574b4945a6aa4a5eecb872b6c1d0be072426c8c795ad868955f5e54e3</citedby><cites>FETCH-LOGICAL-c357t-46cb80cd574b4945a6aa4a5eecb872b6c1d0be072426c8c795ad868955f5e54e3</cites><orcidid>0000-0003-2320-6178 ; 0000-0002-0948-7172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5871596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5871596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-00934036$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubois, S.</creatorcontrib><creatorcontrib>Masuzawa, T.</creatorcontrib><creatorcontrib>Tixeuil, S.</creatorcontrib><title>Bounding the Impact of Unbounded Attacks in Stabilization</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context.</description><subject>Byzantine fault</subject><subject>Computer Science</subject><subject>Context</subject><subject>Data Structures and Algorithms</subject><subject>distributed algorithm</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Fault tolerance</subject><subject>Networking and Internet Architecture</subject><subject>Protocols</subject><subject>Registers</subject><subject>Schedules</subject><subject>spanning tree construction</subject><subject>stabilization</subject><subject>Transient analysis</subject><subject>Ubiquitous Computing</subject><subject>Vegetation</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqUwMrF4ZUi5S3yOPZbPVqoEUtvZchyHGtqkSgwS_HoSFXW60_s-d8PD2DXCBBH03ertcTlJAXGCpE7YCIlUkqLKTvsdBCU6RX3OLrruAwAFgRgxfd981WWo33nceD7f7a2LvKn4ui6Gwpd8GqN1nx0PNV9GW4Rt-LUxNPUlO6vstvNX_3PM1s9Pq4dZsnh9mT9MF4nLKI-JkK5Q4ErKRSG0ICutFZa87-M8LaTDEgoPeSpS6ZTLNdlSSaWJKvIkfDZmt4e_G7s1-zbsbPtjGhvMbLowQwagMwGZ_MaeTQ6sa5uua311PEAwgyMzODKDI9M76vmbAx-890eWVI6kZfYH4aBhMw</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Dubois, S.</creator><creator>Masuzawa, T.</creator><creator>Tixeuil, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2320-6178</orcidid><orcidid>https://orcid.org/0000-0002-0948-7172</orcidid></search><sort><creationdate>201203</creationdate><title>Bounding the Impact of Unbounded Attacks in Stabilization</title><author>Dubois, S. ; Masuzawa, T. ; Tixeuil, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-46cb80cd574b4945a6aa4a5eecb872b6c1d0be072426c8c795ad868955f5e54e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Byzantine fault</topic><topic>Computer Science</topic><topic>Context</topic><topic>Data Structures and Algorithms</topic><topic>distributed algorithm</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Fault tolerance</topic><topic>Networking and Internet Architecture</topic><topic>Protocols</topic><topic>Registers</topic><topic>Schedules</topic><topic>spanning tree construction</topic><topic>stabilization</topic><topic>Transient analysis</topic><topic>Ubiquitous Computing</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubois, S.</creatorcontrib><creatorcontrib>Masuzawa, T.</creatorcontrib><creatorcontrib>Tixeuil, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dubois, S.</au><au>Masuzawa, T.</au><au>Tixeuil, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounding the Impact of Unbounded Attacks in Stabilization</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2012-03</date><risdate>2012</risdate><volume>23</volume><issue>3</issue><spage>460</spage><epage>466</epage><pages>460-466</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context.</abstract><pub>IEEE</pub><doi>10.1109/TPDS.2011.158</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2320-6178</orcidid><orcidid>https://orcid.org/0000-0002-0948-7172</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2012-03, Vol.23 (3), p.460-466
issn 1045-9219
1558-2183
language eng
recordid cdi_crossref_primary_10_1109_TPDS_2011_158
source IEEE Electronic Library (IEL)
subjects Byzantine fault
Computer Science
Context
Data Structures and Algorithms
distributed algorithm
Distributed, Parallel, and Cluster Computing
Fault tolerance
Networking and Internet Architecture
Protocols
Registers
Schedules
spanning tree construction
stabilization
Transient analysis
Ubiquitous Computing
Vegetation
title Bounding the Impact of Unbounded Attacks in Stabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounding%20the%20Impact%20of%20Unbounded%20Attacks%20in%20Stabilization&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Dubois,%20S.&rft.date=2012-03&rft.volume=23&rft.issue=3&rft.spage=460&rft.epage=466&rft.pages=460-466&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2011.158&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_00934036v1%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5871596&rfr_iscdi=true