A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning
Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consumi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2024-12, Vol.46 (12), p.10389-10403 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10403 |
---|---|
container_issue | 12 |
container_start_page | 10389 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 46 |
creator | Zong, Yongcheng Zuo, Qiankun Ng, Michael Kwok-Po Lei, Baiying Wang, Shuqiang |
description | Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research. |
doi_str_mv | 10.1109/TPAMI.2024.3442811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2024_3442811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10636067</ieee_id><sourcerecordid>3092866831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-1d5784864b7d8c17418b189c1e913cb1cae8efa174288fc4080fc0a13a7bdeb33</originalsourceid><addsrcrecordid>eNpNkFFPwjAQxxujEUS_gDFmj74Me21Zu0dERRJUHvB56bobVmDDdoP47R0yjU93l_vdP5cfIZdA-wA0vp3Phs-TPqNM9LkQTAEckS7EPA75gMfHpEshYqFSTHXImfcflIIYUH5KOjwGLqmUXbIcBi-4C-6ctkXTVbvSLYNRWfjK1aayZRHMtNOZXayDvHQtd2996TJ0wdbqZsjz2jdkeKc9ZsHY6c37PqJy2ld2i8EUtStssTgnJ7leebxoa4-8PT7MR0_h9HU8GQ2noWEirkLIBlIJFYlUZsqAFKBSULEBbL42KRiNCnPdLJhSuRFU0dxQDVzLNMOU8x65OeRuXPlZo6-StfUGVytdYFn7hNOYqShSHBqUHVDjSu8d5snG2bV2XwnQZC85-ZGc7CUnreTm6LrNr9M1Zn8nv1Yb4OoAWET8lxjxiEaSfwPwMoFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092866831</pqid></control><display><type>article</type><title>A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zong, Yongcheng ; Zuo, Qiankun ; Ng, Michael Kwok-Po ; Lei, Baiying ; Wang, Shuqiang</creator><creatorcontrib>Zong, Yongcheng ; Zuo, Qiankun ; Ng, Michael Kwok-Po ; Lei, Baiying ; Wang, Shuqiang</creatorcontrib><description>Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3442811</identifier><identifier>PMID: 39137077</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aged ; Algorithms ; Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - physiopathology ; Alzheimers disease ; autism spectrum disorder ; Brain - diagnostic imaging ; Brain Diseases - diagnostic imaging ; Brain modeling ; brain network ; Contrastive learning ; Deep Learning ; Feature extraction ; graph contrastive learning ; Humans ; Image Processing, Computer-Assisted - methods ; Nerve Net - diagnostic imaging ; Network analyzers ; Neuroimaging ; region-aware diffusion ; Software</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.10389-10403</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-1d5784864b7d8c17418b189c1e913cb1cae8efa174288fc4080fc0a13a7bdeb33</cites><orcidid>0000-0002-3087-2550 ; 0000-0003-1119-320X ; 0000-0001-6833-5227 ; 0009-0002-8487-5762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10636067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10636067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39137077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zong, Yongcheng</creatorcontrib><creatorcontrib>Zuo, Qiankun</creatorcontrib><creatorcontrib>Ng, Michael Kwok-Po</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Shuqiang</creatorcontrib><title>A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Alzheimers disease</subject><subject>autism spectrum disorder</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Diseases - diagnostic imaging</subject><subject>Brain modeling</subject><subject>brain network</subject><subject>Contrastive learning</subject><subject>Deep Learning</subject><subject>Feature extraction</subject><subject>graph contrastive learning</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Network analyzers</subject><subject>Neuroimaging</subject><subject>region-aware diffusion</subject><subject>Software</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkFFPwjAQxxujEUS_gDFmj74Me21Zu0dERRJUHvB56bobVmDDdoP47R0yjU93l_vdP5cfIZdA-wA0vp3Phs-TPqNM9LkQTAEckS7EPA75gMfHpEshYqFSTHXImfcflIIYUH5KOjwGLqmUXbIcBi-4C-6ctkXTVbvSLYNRWfjK1aayZRHMtNOZXayDvHQtd2996TJ0wdbqZsjz2jdkeKc9ZsHY6c37PqJy2ld2i8EUtStssTgnJ7leebxoa4-8PT7MR0_h9HU8GQ2noWEirkLIBlIJFYlUZsqAFKBSULEBbL42KRiNCnPdLJhSuRFU0dxQDVzLNMOU8x65OeRuXPlZo6-StfUGVytdYFn7hNOYqShSHBqUHVDjSu8d5snG2bV2XwnQZC85-ZGc7CUnreTm6LrNr9M1Zn8nv1Yb4OoAWET8lxjxiEaSfwPwMoFY</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zong, Yongcheng</creator><creator>Zuo, Qiankun</creator><creator>Ng, Michael Kwok-Po</creator><creator>Lei, Baiying</creator><creator>Wang, Shuqiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0003-1119-320X</orcidid><orcidid>https://orcid.org/0000-0001-6833-5227</orcidid><orcidid>https://orcid.org/0009-0002-8487-5762</orcidid></search><sort><creationdate>202412</creationdate><title>A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning</title><author>Zong, Yongcheng ; Zuo, Qiankun ; Ng, Michael Kwok-Po ; Lei, Baiying ; Wang, Shuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-1d5784864b7d8c17418b189c1e913cb1cae8efa174288fc4080fc0a13a7bdeb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Alzheimers disease</topic><topic>autism spectrum disorder</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Diseases - diagnostic imaging</topic><topic>Brain modeling</topic><topic>brain network</topic><topic>Contrastive learning</topic><topic>Deep Learning</topic><topic>Feature extraction</topic><topic>graph contrastive learning</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Network analyzers</topic><topic>Neuroimaging</topic><topic>region-aware diffusion</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zong, Yongcheng</creatorcontrib><creatorcontrib>Zuo, Qiankun</creatorcontrib><creatorcontrib>Ng, Michael Kwok-Po</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Shuqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zong, Yongcheng</au><au>Zuo, Qiankun</au><au>Ng, Michael Kwok-Po</au><au>Lei, Baiying</au><au>Wang, Shuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-12</date><risdate>2024</risdate><volume>46</volume><issue>12</issue><spage>10389</spage><epage>10403</epage><pages>10389-10403</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39137077</pmid><doi>10.1109/TPAMI.2024.3442811</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0003-1119-320X</orcidid><orcidid>https://orcid.org/0000-0001-6833-5227</orcidid><orcidid>https://orcid.org/0009-0002-8487-5762</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.10389-10403 |
issn | 0162-8828 1939-3539 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2024_3442811 |
source | IEEE Electronic Library (IEL) |
subjects | Aged Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - physiopathology Alzheimers disease autism spectrum disorder Brain - diagnostic imaging Brain Diseases - diagnostic imaging Brain modeling brain network Contrastive learning Deep Learning Feature extraction graph contrastive learning Humans Image Processing, Computer-Assisted - methods Nerve Net - diagnostic imaging Network analyzers Neuroimaging region-aware diffusion Software |
title | A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Brain%20Network%20Construction%20Paradigm%20for%20Brain%20Disorder%20via%20Diffusion-Based%20Graph%20Contrastive%20Learning&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zong,%20Yongcheng&rft.date=2024-12&rft.volume=46&rft.issue=12&rft.spage=10389&rft.epage=10403&rft.pages=10389-10403&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3442811&rft_dat=%3Cproquest_RIE%3E3092866831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092866831&rft_id=info:pmid/39137077&rft_ieee_id=10636067&rfr_iscdi=true |