A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning

Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consumi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-12, Vol.46 (12), p.10389-10403
Hauptverfasser: Zong, Yongcheng, Zuo, Qiankun, Ng, Michael Kwok-Po, Lei, Baiying, Wang, Shuqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10403
container_issue 12
container_start_page 10389
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 46
creator Zong, Yongcheng
Zuo, Qiankun
Ng, Michael Kwok-Po
Lei, Baiying
Wang, Shuqiang
description Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.
doi_str_mv 10.1109/TPAMI.2024.3442811
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2024_3442811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10636067</ieee_id><sourcerecordid>3092866831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-1d5784864b7d8c17418b189c1e913cb1cae8efa174288fc4080fc0a13a7bdeb33</originalsourceid><addsrcrecordid>eNpNkFFPwjAQxxujEUS_gDFmj74Me21Zu0dERRJUHvB56bobVmDDdoP47R0yjU93l_vdP5cfIZdA-wA0vp3Phs-TPqNM9LkQTAEckS7EPA75gMfHpEshYqFSTHXImfcflIIYUH5KOjwGLqmUXbIcBi-4C-6ctkXTVbvSLYNRWfjK1aayZRHMtNOZXayDvHQtd2996TJ0wdbqZsjz2jdkeKc9ZsHY6c37PqJy2ld2i8EUtStssTgnJ7leebxoa4-8PT7MR0_h9HU8GQ2noWEirkLIBlIJFYlUZsqAFKBSULEBbL42KRiNCnPdLJhSuRFU0dxQDVzLNMOU8x65OeRuXPlZo6-StfUGVytdYFn7hNOYqShSHBqUHVDjSu8d5snG2bV2XwnQZC85-ZGc7CUnreTm6LrNr9M1Zn8nv1Yb4OoAWET8lxjxiEaSfwPwMoFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092866831</pqid></control><display><type>article</type><title>A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zong, Yongcheng ; Zuo, Qiankun ; Ng, Michael Kwok-Po ; Lei, Baiying ; Wang, Shuqiang</creator><creatorcontrib>Zong, Yongcheng ; Zuo, Qiankun ; Ng, Michael Kwok-Po ; Lei, Baiying ; Wang, Shuqiang</creatorcontrib><description>Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3442811</identifier><identifier>PMID: 39137077</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aged ; Algorithms ; Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - physiopathology ; Alzheimers disease ; autism spectrum disorder ; Brain - diagnostic imaging ; Brain Diseases - diagnostic imaging ; Brain modeling ; brain network ; Contrastive learning ; Deep Learning ; Feature extraction ; graph contrastive learning ; Humans ; Image Processing, Computer-Assisted - methods ; Nerve Net - diagnostic imaging ; Network analyzers ; Neuroimaging ; region-aware diffusion ; Software</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.10389-10403</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-1d5784864b7d8c17418b189c1e913cb1cae8efa174288fc4080fc0a13a7bdeb33</cites><orcidid>0000-0002-3087-2550 ; 0000-0003-1119-320X ; 0000-0001-6833-5227 ; 0009-0002-8487-5762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10636067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10636067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39137077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zong, Yongcheng</creatorcontrib><creatorcontrib>Zuo, Qiankun</creatorcontrib><creatorcontrib>Ng, Michael Kwok-Po</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Shuqiang</creatorcontrib><title>A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Alzheimers disease</subject><subject>autism spectrum disorder</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Diseases - diagnostic imaging</subject><subject>Brain modeling</subject><subject>brain network</subject><subject>Contrastive learning</subject><subject>Deep Learning</subject><subject>Feature extraction</subject><subject>graph contrastive learning</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Network analyzers</subject><subject>Neuroimaging</subject><subject>region-aware diffusion</subject><subject>Software</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkFFPwjAQxxujEUS_gDFmj74Me21Zu0dERRJUHvB56bobVmDDdoP47R0yjU93l_vdP5cfIZdA-wA0vp3Phs-TPqNM9LkQTAEckS7EPA75gMfHpEshYqFSTHXImfcflIIYUH5KOjwGLqmUXbIcBi-4C-6ctkXTVbvSLYNRWfjK1aayZRHMtNOZXayDvHQtd2996TJ0wdbqZsjz2jdkeKc9ZsHY6c37PqJy2ld2i8EUtStssTgnJ7leebxoa4-8PT7MR0_h9HU8GQ2noWEirkLIBlIJFYlUZsqAFKBSULEBbL42KRiNCnPdLJhSuRFU0dxQDVzLNMOU8x65OeRuXPlZo6-StfUGVytdYFn7hNOYqShSHBqUHVDjSu8d5snG2bV2XwnQZC85-ZGc7CUnreTm6LrNr9M1Zn8nv1Yb4OoAWET8lxjxiEaSfwPwMoFY</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zong, Yongcheng</creator><creator>Zuo, Qiankun</creator><creator>Ng, Michael Kwok-Po</creator><creator>Lei, Baiying</creator><creator>Wang, Shuqiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0003-1119-320X</orcidid><orcidid>https://orcid.org/0000-0001-6833-5227</orcidid><orcidid>https://orcid.org/0009-0002-8487-5762</orcidid></search><sort><creationdate>202412</creationdate><title>A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning</title><author>Zong, Yongcheng ; Zuo, Qiankun ; Ng, Michael Kwok-Po ; Lei, Baiying ; Wang, Shuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-1d5784864b7d8c17418b189c1e913cb1cae8efa174288fc4080fc0a13a7bdeb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Alzheimers disease</topic><topic>autism spectrum disorder</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Diseases - diagnostic imaging</topic><topic>Brain modeling</topic><topic>brain network</topic><topic>Contrastive learning</topic><topic>Deep Learning</topic><topic>Feature extraction</topic><topic>graph contrastive learning</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Network analyzers</topic><topic>Neuroimaging</topic><topic>region-aware diffusion</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zong, Yongcheng</creatorcontrib><creatorcontrib>Zuo, Qiankun</creatorcontrib><creatorcontrib>Ng, Michael Kwok-Po</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Shuqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zong, Yongcheng</au><au>Zuo, Qiankun</au><au>Ng, Michael Kwok-Po</au><au>Lei, Baiying</au><au>Wang, Shuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-12</date><risdate>2024</risdate><volume>46</volume><issue>12</issue><spage>10389</spage><epage>10403</epage><pages>10389-10403</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39137077</pmid><doi>10.1109/TPAMI.2024.3442811</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0003-1119-320X</orcidid><orcidid>https://orcid.org/0000-0001-6833-5227</orcidid><orcidid>https://orcid.org/0009-0002-8487-5762</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.10389-10403
issn 0162-8828
1939-3539
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2024_3442811
source IEEE Electronic Library (IEL)
subjects Aged
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - physiopathology
Alzheimers disease
autism spectrum disorder
Brain - diagnostic imaging
Brain Diseases - diagnostic imaging
Brain modeling
brain network
Contrastive learning
Deep Learning
Feature extraction
graph contrastive learning
Humans
Image Processing, Computer-Assisted - methods
Nerve Net - diagnostic imaging
Network analyzers
Neuroimaging
region-aware diffusion
Software
title A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Brain%20Network%20Construction%20Paradigm%20for%20Brain%20Disorder%20via%20Diffusion-Based%20Graph%20Contrastive%20Learning&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zong,%20Yongcheng&rft.date=2024-12&rft.volume=46&rft.issue=12&rft.spage=10389&rft.epage=10403&rft.pages=10389-10403&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3442811&rft_dat=%3Cproquest_RIE%3E3092866831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092866831&rft_id=info:pmid/39137077&rft_ieee_id=10636067&rfr_iscdi=true