Gradient Inversion Attacks: Impact Factors Analyses and Privacy Enhancement

Gradient inversion attacks (GIAs) have posed significant challenges to the emerging paradigm of distributed learning, which aims to reconstruct the private training data of clients (participating parties in distributed training) through the shared parameters. For counteracting GIAs, a large number o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-12, Vol.46 (12), p.9834-9850
Hauptverfasser: Ye, Zipeng, Luo, Wenjian, Zhou, Qi, Zhu, Zhenqian, Shi, Yuhui, Jia, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!