Semi-Supervised Coupled Thin-Plate Spline Model for Rotation Correction and Beyond

Thin-plate spline (TPS) is a principal warp that allows for representing elastic, nonlinear transformation with control point motions. With the increase of control points, the warp becomes increasingly flexible but usually encounters a bottleneck caused by undesired issues, e.g., content distortion....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-12, Vol.46 (12), p.9192-9204
Hauptverfasser: Nie, Lang, Lin, Chunyu, Liao, Kang, Liu, Shuaicheng, Zhao, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9204
container_issue 12
container_start_page 9192
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 46
creator Nie, Lang
Lin, Chunyu
Liao, Kang
Liu, Shuaicheng
Zhao, Yao
description Thin-plate spline (TPS) is a principal warp that allows for representing elastic, nonlinear transformation with control point motions. With the increase of control points, the warp becomes increasingly flexible but usually encounters a bottleneck caused by undesired issues, e.g., content distortion. In this paper, we explore generic applications of TPS in single-image-based warping tasks, such as rotation correction, rectangling, and portrait correction. To break this bottleneck, we propose the coupled thin-plate spline model (CoupledTPS), which iteratively couples multiple TPS with limited control points into a more flexible and powerful transformation. Concretely, we first design an iterative search to predict new control points according to the current latent condition. Then, we present the warping flow as a bridge for the coupling of different TPS transformations, effectively eliminating interpolation errors caused by multiple warps. Besides, in light of the laborious annotation cost, we develop a semi-supervised learning scheme to improve warping quality by exploiting unlabeled data. It is formulated through dual transformation between the searched control points of unlabeled data and its graphic augmentation, yielding an implicit correction consistency constraint. Finally, we collect massive unlabeled data to exhibit the benefit of our semi-supervised scheme in rotation correction. Extensive experiments demonstrate the superiority and universality of CoupledTPS over the existing State-of-the-Art (SoTA) solutions for rotation correction and beyond.
doi_str_mv 10.1109/TPAMI.2024.3417024
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2024_3417024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10566012</ieee_id><sourcerecordid>3070838464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-d8ac4aa969477ad5a495f87096d36106b09bb2f6e97ee27ff50847f50a4001d3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EgvL4AYRQlmxSxo_4sYSKlwQC0e4jN56IoDQOdoLE32Pagtj4enHmauYQckphSimYy8XL1dPDlAETUy6oSrlDJtRwk_OCm10yASpZrjXTB-QwxncAKgrg--SAawMgKUzI6xxXTT4fewyfTUSXzfzYtykXb02Xv7R2wGzet02H2ZN32Ga1D9mrH-zQ-C7BIWC1_trOZdf45Tt3TPZq20Y82eYRWdzeLGb3-ePz3cPs6jGvmCqG3GlbCWuNNEIp6worTFFrBUY6nlaTSzDLJaslGoXIVF0XoIVKrxXpEMePyMWmtg_-Y8Q4lKsmVti2tkM_xpKDAs21kCKhbINWwccYsC770Kxs-CoplD8qy7XK8kdluVWZhs63_eNyhe5v5NddAs42QIOI_xoLKYEy_g0lendq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070838464</pqid></control><display><type>article</type><title>Semi-Supervised Coupled Thin-Plate Spline Model for Rotation Correction and Beyond</title><source>IEEE Electronic Library (IEL)</source><creator>Nie, Lang ; Lin, Chunyu ; Liao, Kang ; Liu, Shuaicheng ; Zhao, Yao</creator><creatorcontrib>Nie, Lang ; Lin, Chunyu ; Liao, Kang ; Liu, Shuaicheng ; Zhao, Yao</creatorcontrib><description>Thin-plate spline (TPS) is a principal warp that allows for representing elastic, nonlinear transformation with control point motions. With the increase of control points, the warp becomes increasingly flexible but usually encounters a bottleneck caused by undesired issues, e.g., content distortion. In this paper, we explore generic applications of TPS in single-image-based warping tasks, such as rotation correction, rectangling, and portrait correction. To break this bottleneck, we propose the coupled thin-plate spline model (CoupledTPS), which iteratively couples multiple TPS with limited control points into a more flexible and powerful transformation. Concretely, we first design an iterative search to predict new control points according to the current latent condition. Then, we present the warping flow as a bridge for the coupling of different TPS transformations, effectively eliminating interpolation errors caused by multiple warps. Besides, in light of the laborious annotation cost, we develop a semi-supervised learning scheme to improve warping quality by exploiting unlabeled data. It is formulated through dual transformation between the searched control points of unlabeled data and its graphic augmentation, yielding an implicit correction consistency constraint. Finally, we collect massive unlabeled data to exhibit the benefit of our semi-supervised scheme in rotation correction. Extensive experiments demonstrate the superiority and universality of CoupledTPS over the existing State-of-the-Art (SoTA) solutions for rotation correction and beyond.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3417024</identifier><identifier>PMID: 38900610</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Cameras ; Couplings ; Nonlinear distortion ; Portrait correction ; rectangling ; rotation correction ; semi-supervised learning ; Semisupervised learning ; Splines (mathematics) ; Task analysis ; thin-plate spline</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.9192-9204</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-d8ac4aa969477ad5a495f87096d36106b09bb2f6e97ee27ff50847f50a4001d3</cites><orcidid>0000-0003-2847-0349 ; 0000-0002-8815-5335 ; 0000-0001-9429-1096 ; 0000-0002-8581-9554 ; 0000-0002-7776-889X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10566012$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10566012$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38900610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Lang</creatorcontrib><creatorcontrib>Lin, Chunyu</creatorcontrib><creatorcontrib>Liao, Kang</creatorcontrib><creatorcontrib>Liu, Shuaicheng</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><title>Semi-Supervised Coupled Thin-Plate Spline Model for Rotation Correction and Beyond</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Thin-plate spline (TPS) is a principal warp that allows for representing elastic, nonlinear transformation with control point motions. With the increase of control points, the warp becomes increasingly flexible but usually encounters a bottleneck caused by undesired issues, e.g., content distortion. In this paper, we explore generic applications of TPS in single-image-based warping tasks, such as rotation correction, rectangling, and portrait correction. To break this bottleneck, we propose the coupled thin-plate spline model (CoupledTPS), which iteratively couples multiple TPS with limited control points into a more flexible and powerful transformation. Concretely, we first design an iterative search to predict new control points according to the current latent condition. Then, we present the warping flow as a bridge for the coupling of different TPS transformations, effectively eliminating interpolation errors caused by multiple warps. Besides, in light of the laborious annotation cost, we develop a semi-supervised learning scheme to improve warping quality by exploiting unlabeled data. It is formulated through dual transformation between the searched control points of unlabeled data and its graphic augmentation, yielding an implicit correction consistency constraint. Finally, we collect massive unlabeled data to exhibit the benefit of our semi-supervised scheme in rotation correction. Extensive experiments demonstrate the superiority and universality of CoupledTPS over the existing State-of-the-Art (SoTA) solutions for rotation correction and beyond.</description><subject>Annotations</subject><subject>Cameras</subject><subject>Couplings</subject><subject>Nonlinear distortion</subject><subject>Portrait correction</subject><subject>rectangling</subject><subject>rotation correction</subject><subject>semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Splines (mathematics)</subject><subject>Task analysis</subject><subject>thin-plate spline</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EgvL4AYRQlmxSxo_4sYSKlwQC0e4jN56IoDQOdoLE32Pagtj4enHmauYQckphSimYy8XL1dPDlAETUy6oSrlDJtRwk_OCm10yASpZrjXTB-QwxncAKgrg--SAawMgKUzI6xxXTT4fewyfTUSXzfzYtykXb02Xv7R2wGzet02H2ZN32Ga1D9mrH-zQ-C7BIWC1_trOZdf45Tt3TPZq20Y82eYRWdzeLGb3-ePz3cPs6jGvmCqG3GlbCWuNNEIp6worTFFrBUY6nlaTSzDLJaslGoXIVF0XoIVKrxXpEMePyMWmtg_-Y8Q4lKsmVti2tkM_xpKDAs21kCKhbINWwccYsC770Kxs-CoplD8qy7XK8kdluVWZhs63_eNyhe5v5NddAs42QIOI_xoLKYEy_g0lendq</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Nie, Lang</creator><creator>Lin, Chunyu</creator><creator>Liao, Kang</creator><creator>Liu, Shuaicheng</creator><creator>Zhao, Yao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2847-0349</orcidid><orcidid>https://orcid.org/0000-0002-8815-5335</orcidid><orcidid>https://orcid.org/0000-0001-9429-1096</orcidid><orcidid>https://orcid.org/0000-0002-8581-9554</orcidid><orcidid>https://orcid.org/0000-0002-7776-889X</orcidid></search><sort><creationdate>20241201</creationdate><title>Semi-Supervised Coupled Thin-Plate Spline Model for Rotation Correction and Beyond</title><author>Nie, Lang ; Lin, Chunyu ; Liao, Kang ; Liu, Shuaicheng ; Zhao, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-d8ac4aa969477ad5a495f87096d36106b09bb2f6e97ee27ff50847f50a4001d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Cameras</topic><topic>Couplings</topic><topic>Nonlinear distortion</topic><topic>Portrait correction</topic><topic>rectangling</topic><topic>rotation correction</topic><topic>semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Splines (mathematics)</topic><topic>Task analysis</topic><topic>thin-plate spline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Lang</creatorcontrib><creatorcontrib>Lin, Chunyu</creatorcontrib><creatorcontrib>Liao, Kang</creatorcontrib><creatorcontrib>Liu, Shuaicheng</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Lang</au><au>Lin, Chunyu</au><au>Liao, Kang</au><au>Liu, Shuaicheng</au><au>Zhao, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Supervised Coupled Thin-Plate Spline Model for Rotation Correction and Beyond</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>46</volume><issue>12</issue><spage>9192</spage><epage>9204</epage><pages>9192-9204</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Thin-plate spline (TPS) is a principal warp that allows for representing elastic, nonlinear transformation with control point motions. With the increase of control points, the warp becomes increasingly flexible but usually encounters a bottleneck caused by undesired issues, e.g., content distortion. In this paper, we explore generic applications of TPS in single-image-based warping tasks, such as rotation correction, rectangling, and portrait correction. To break this bottleneck, we propose the coupled thin-plate spline model (CoupledTPS), which iteratively couples multiple TPS with limited control points into a more flexible and powerful transformation. Concretely, we first design an iterative search to predict new control points according to the current latent condition. Then, we present the warping flow as a bridge for the coupling of different TPS transformations, effectively eliminating interpolation errors caused by multiple warps. Besides, in light of the laborious annotation cost, we develop a semi-supervised learning scheme to improve warping quality by exploiting unlabeled data. It is formulated through dual transformation between the searched control points of unlabeled data and its graphic augmentation, yielding an implicit correction consistency constraint. Finally, we collect massive unlabeled data to exhibit the benefit of our semi-supervised scheme in rotation correction. Extensive experiments demonstrate the superiority and universality of CoupledTPS over the existing State-of-the-Art (SoTA) solutions for rotation correction and beyond.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38900610</pmid><doi>10.1109/TPAMI.2024.3417024</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2847-0349</orcidid><orcidid>https://orcid.org/0000-0002-8815-5335</orcidid><orcidid>https://orcid.org/0000-0001-9429-1096</orcidid><orcidid>https://orcid.org/0000-0002-8581-9554</orcidid><orcidid>https://orcid.org/0000-0002-7776-889X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.9192-9204
issn 0162-8828
1939-3539
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2024_3417024
source IEEE Electronic Library (IEL)
subjects Annotations
Cameras
Couplings
Nonlinear distortion
Portrait correction
rectangling
rotation correction
semi-supervised learning
Semisupervised learning
Splines (mathematics)
Task analysis
thin-plate spline
title Semi-Supervised Coupled Thin-Plate Spline Model for Rotation Correction and Beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Supervised%20Coupled%20Thin-Plate%20Spline%20Model%20for%20Rotation%20Correction%20and%20Beyond&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Nie,%20Lang&rft.date=2024-12-01&rft.volume=46&rft.issue=12&rft.spage=9192&rft.epage=9204&rft.pages=9192-9204&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3417024&rft_dat=%3Cproquest_RIE%3E3070838464%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070838464&rft_id=info:pmid/38900610&rft_ieee_id=10566012&rfr_iscdi=true