Dimension Reduction With Prior Information for Knowledge Discovery

This paper addresses the problem of mapping high-dimensional data to a low-dimensional space, in the presence of other known features. This problem is ubiquitous in science and engineering as there are often controllable/measurable features in most applications. To solve this problem, this paper pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-05, Vol.46 (5), p.3625-3636
1. Verfasser: Bui, Anh Tuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3636
container_issue 5
container_start_page 3625
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 46
creator Bui, Anh Tuan
description This paper addresses the problem of mapping high-dimensional data to a low-dimensional space, in the presence of other known features. This problem is ubiquitous in science and engineering as there are often controllable/measurable features in most applications. To solve this problem, this paper proposes a broad class of methods, which is referred to as conditional multidimensional scaling (MDS). An algorithm for optimizing the objective function of conditional MDS is also developed. The convergence of this algorithm is proven under mild assumptions. Conditional MDS is illustrated with kinship terms, facial expressions, textile fabrics, car-brand perception, and cylinder machining examples. These examples demonstrate the advantages of conditional MDS over conventional dimension reduction in improving the estimation quality of the reduced-dimension space and simplifying visualization and knowledge discovery tasks. Computer codes for this work are available in the open-source cml R package.
doi_str_mv 10.1109/TPAMI.2023.3346212
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3346212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10371783</ieee_id><sourcerecordid>3031394898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-c6eeb2842cbc40cf8c5c0a63aedb17f7909956e16646d1b7eb4b2234dc0df0ce3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4Mobk7_AREp-OJLZ5Jr0-Rxbv4YThwy8bG06VU71mYmq7L_3nabIj7dcfncN8eHkFNG-4xRdTWbDh7HfU459AECwRnfI12mQPkQgtonXcoE96XkskOOnJtTyoKQwiHpgAyFjCLZJdejosTKFabynjGr9artXovVuze1hbHeuMqNLZPNuOm8h8p8LTB7Q29UOG0-0a6PyUGeLBye7GqPvNzezIb3_uTpbjwcTHwNFFa-FogplwHXqQ6ozqUONU0EJJilLMojRZUKBTIhApGxNMI0SDmHINM0y6lG6JHLbe7Smo8a3SoumxNwsUgqNLWLm1-AMsqYbNCLf-jc1LZqrmspBiqQqqX4ltLWOGcxj5e2KBO7jhmNW8PxxnDcGo53hpul8110nZaY_a78KG2Asy1QIOKfRIhY8wrf7G5_bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031394898</pqid></control><display><type>article</type><title>Dimension Reduction With Prior Information for Knowledge Discovery</title><source>IEEE/IET Electronic Library</source><creator>Bui, Anh Tuan</creator><creatorcontrib>Bui, Anh Tuan</creatorcontrib><description>This paper addresses the problem of mapping high-dimensional data to a low-dimensional space, in the presence of other known features. This problem is ubiquitous in science and engineering as there are often controllable/measurable features in most applications. To solve this problem, this paper proposes a broad class of methods, which is referred to as conditional multidimensional scaling (MDS). An algorithm for optimizing the objective function of conditional MDS is also developed. The convergence of this algorithm is proven under mild assumptions. Conditional MDS is illustrated with kinship terms, facial expressions, textile fabrics, car-brand perception, and cylinder machining examples. These examples demonstrate the advantages of conditional MDS over conventional dimension reduction in improving the estimation quality of the reduced-dimension space and simplifying visualization and knowledge discovery tasks. Computer codes for this work are available in the open-source cml R package.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3346212</identifier><identifier>PMID: 38568778</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Controllability ; Data visualization ; Dimensionality reduction ; Distance scaling ; ISOMAP ; Knowledge discovery ; Machining ; Manifolds ; Measurement ; Multidimensional methods ; multidimensional scaling ; Principal component analysis ; Reduction ; Sammon mapping ; SMACOF ; Task analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-05, Vol.46 (5), p.3625-3636</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-c6eeb2842cbc40cf8c5c0a63aedb17f7909956e16646d1b7eb4b2234dc0df0ce3</cites><orcidid>0000-0003-0397-1307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10371783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10371783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38568778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, Anh Tuan</creatorcontrib><title>Dimension Reduction With Prior Information for Knowledge Discovery</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper addresses the problem of mapping high-dimensional data to a low-dimensional space, in the presence of other known features. This problem is ubiquitous in science and engineering as there are often controllable/measurable features in most applications. To solve this problem, this paper proposes a broad class of methods, which is referred to as conditional multidimensional scaling (MDS). An algorithm for optimizing the objective function of conditional MDS is also developed. The convergence of this algorithm is proven under mild assumptions. Conditional MDS is illustrated with kinship terms, facial expressions, textile fabrics, car-brand perception, and cylinder machining examples. These examples demonstrate the advantages of conditional MDS over conventional dimension reduction in improving the estimation quality of the reduced-dimension space and simplifying visualization and knowledge discovery tasks. Computer codes for this work are available in the open-source cml R package.</description><subject>Algorithms</subject><subject>Controllability</subject><subject>Data visualization</subject><subject>Dimensionality reduction</subject><subject>Distance scaling</subject><subject>ISOMAP</subject><subject>Knowledge discovery</subject><subject>Machining</subject><subject>Manifolds</subject><subject>Measurement</subject><subject>Multidimensional methods</subject><subject>multidimensional scaling</subject><subject>Principal component analysis</subject><subject>Reduction</subject><subject>Sammon mapping</subject><subject>SMACOF</subject><subject>Task analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9LwzAQx4Mobk7_AREp-OJLZ5Jr0-Rxbv4YThwy8bG06VU71mYmq7L_3nabIj7dcfncN8eHkFNG-4xRdTWbDh7HfU459AECwRnfI12mQPkQgtonXcoE96XkskOOnJtTyoKQwiHpgAyFjCLZJdejosTKFabynjGr9artXovVuze1hbHeuMqNLZPNuOm8h8p8LTB7Q29UOG0-0a6PyUGeLBye7GqPvNzezIb3_uTpbjwcTHwNFFa-FogplwHXqQ6ozqUONU0EJJilLMojRZUKBTIhApGxNMI0SDmHINM0y6lG6JHLbe7Smo8a3SoumxNwsUgqNLWLm1-AMsqYbNCLf-jc1LZqrmspBiqQqqX4ltLWOGcxj5e2KBO7jhmNW8PxxnDcGo53hpul8110nZaY_a78KG2Asy1QIOKfRIhY8wrf7G5_bA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Bui, Anh Tuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0397-1307</orcidid></search><sort><creationdate>20240501</creationdate><title>Dimension Reduction With Prior Information for Knowledge Discovery</title><author>Bui, Anh Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-c6eeb2842cbc40cf8c5c0a63aedb17f7909956e16646d1b7eb4b2234dc0df0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Controllability</topic><topic>Data visualization</topic><topic>Dimensionality reduction</topic><topic>Distance scaling</topic><topic>ISOMAP</topic><topic>Knowledge discovery</topic><topic>Machining</topic><topic>Manifolds</topic><topic>Measurement</topic><topic>Multidimensional methods</topic><topic>multidimensional scaling</topic><topic>Principal component analysis</topic><topic>Reduction</topic><topic>Sammon mapping</topic><topic>SMACOF</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Anh Tuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bui, Anh Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimension Reduction With Prior Information for Knowledge Discovery</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>46</volume><issue>5</issue><spage>3625</spage><epage>3636</epage><pages>3625-3636</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper addresses the problem of mapping high-dimensional data to a low-dimensional space, in the presence of other known features. This problem is ubiquitous in science and engineering as there are often controllable/measurable features in most applications. To solve this problem, this paper proposes a broad class of methods, which is referred to as conditional multidimensional scaling (MDS). An algorithm for optimizing the objective function of conditional MDS is also developed. The convergence of this algorithm is proven under mild assumptions. Conditional MDS is illustrated with kinship terms, facial expressions, textile fabrics, car-brand perception, and cylinder machining examples. These examples demonstrate the advantages of conditional MDS over conventional dimension reduction in improving the estimation quality of the reduced-dimension space and simplifying visualization and knowledge discovery tasks. Computer codes for this work are available in the open-source cml R package.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38568778</pmid><doi>10.1109/TPAMI.2023.3346212</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0397-1307</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-05, Vol.46 (5), p.3625-3636
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2023_3346212
source IEEE/IET Electronic Library
subjects Algorithms
Controllability
Data visualization
Dimensionality reduction
Distance scaling
ISOMAP
Knowledge discovery
Machining
Manifolds
Measurement
Multidimensional methods
multidimensional scaling
Principal component analysis
Reduction
Sammon mapping
SMACOF
Task analysis
title Dimension Reduction With Prior Information for Knowledge Discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimension%20Reduction%20With%20Prior%20Information%20for%20Knowledge%20Discovery&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Bui,%20Anh%20Tuan&rft.date=2024-05-01&rft.volume=46&rft.issue=5&rft.spage=3625&rft.epage=3636&rft.pages=3625-3636&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3346212&rft_dat=%3Cproquest_RIE%3E3031394898%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031394898&rft_id=info:pmid/38568778&rft_ieee_id=10371783&rfr_iscdi=true