STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs

Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-11, Vol.PP (11), p.1-15
Hauptverfasser: Shen, Shuai, Li, Wanhua, Zhu, Zheng, Zhou, Jie, Lu, Jiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 11
container_start_page 1
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume PP
creator Shen, Shuai
Li, Wanhua
Zhu, Zheng
Zhou, Jie
Lu, Jiwen
description Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-based methods suffer from the limitation of training data scale, while local-based ones are inefficient for inference due to the use of numerous overlapped subgraphs. Previous approaches fail to tackle these two challenges simultaneously. To address the dilemma of large-scale training and efficient inference, we propose the STructure-AwaRe Face Clustering (STAR-FC) method. Specifically, we design a structure-preserving subgraph sampling strategy to explore the power of large-scale training data, which can increase the training data scale from {10^{5}} to {10^{7}}. On this basis, a novel hierarchical GCN training paradigm is further proposed for better capturing the dynamic local structure. During inference, the STAR-FC performs efficient full-graph clustering with two steps: graph parsing and graph refinement. And the concept of node intimacy is introduced in the second step to mine the local structural information, where a calibration module is further proposed for fairer edge scores. The STAR-FC gets 93.21 pairwise F-score on standard partial MS1M within 312 seconds, which far surpasses the state-of-the-arts while maintaining high inference efficiency. Furthermore, we are the first to train on an ultra-large-scale graph with 20 M nodes, and achieve superior inference results on 12 M testing data. Overall, as a simple and effective method, the proposed STAR-FC provides a strong baseline for large-scale face clustering. Code is available in https://github.com/sstzal/STAR-FC .
doi_str_mv 10.1109/TPAMI.2023.3299263
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3299263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10195951</ieee_id><sourcerecordid>2854436449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-cfd47dc53ee8c8adf917ffc4f19e415a7087fa9580b98b20075e4d93f949e8253</originalsourceid><addsrcrecordid>eNpd0EtLAzEUhuEgitbLHxCRATduUnNtctyValWoKLauhzRzopVppyYziP_eqa0irrJ5zkd4CTnmrMs5g4vJY__-riuYkF0pAERPbpEOBwlUagnbpMN4T1Brhd0j-ym9McaVZnKX7EmjwBrd65Cr8aT_RIeDy2xcx8bXTUTa_3ARs6HzmA3KJtUYZ4uXrFpkz2UdHR25-IJ07F2J2U10y9d0SHaCKxMebd4D8jy8ngxu6ejh5m7QH1EvmaypD4UyhdcS0XrrigDchOBV4ICKa2eYNcGBtmwKdioYMxpVATKAArRCywNyvt5dxuq9wVTn81nyWJZugVWTcmG1UrKnFLT07B99q5q4aH_XKiNaBka2SqyVj1VKEUO-jLO5i585Z_mqcf7dOF81zjeN26PTzXQznWPxe_ITtQUnazBDxD-LHDRoLr8AYBV9-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872443973</pqid></control><display><type>article</type><title>STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Shuai ; Li, Wanhua ; Zhu, Zheng ; Zhou, Jie ; Lu, Jiwen</creator><creatorcontrib>Shen, Shuai ; Li, Wanhua ; Zhu, Zheng ; Zhou, Jie ; Lu, Jiwen</creatorcontrib><description><![CDATA[Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-based methods suffer from the limitation of training data scale, while local-based ones are inefficient for inference due to the use of numerous overlapped subgraphs. Previous approaches fail to tackle these two challenges simultaneously. To address the dilemma of large-scale training and efficient inference, we propose the STructure-AwaRe Face Clustering (STAR-FC) method. Specifically, we design a structure-preserving subgraph sampling strategy to explore the power of large-scale training data, which can increase the training data scale from <inline-formula><tex-math notation="LaTeX">{10^{5}}</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">{10^{7}}</tex-math></inline-formula>. On this basis, a novel hierarchical GCN training paradigm is further proposed for better capturing the dynamic local structure. During inference, the STAR-FC performs efficient full-graph clustering with two steps: graph parsing and graph refinement. And the concept of node intimacy is introduced in the second step to mine the local structural information, where a calibration module is further proposed for fairer edge scores. The STAR-FC gets 93.21 pairwise F-score on standard partial MS1M within 312 seconds, which far surpasses the state-of-the-arts while maintaining high inference efficiency. Furthermore, we are the first to train on an ultra-large-scale graph with 20 M nodes, and achieve superior inference results on 12 M testing data. Overall, as a simple and effective method, the proposed STAR-FC provides a strong baseline for large-scale face clustering. Code is available in https://github.com/sstzal/STAR-FC .]]></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3299263</identifier><identifier>PMID: 37498756</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Clustering ; Clustering algorithms ; Face clustering ; Face recognition ; Faces ; graph convolutional network ; Graph theory ; hierarchical GCN training ; Inference ; large-scale graph ; node intimacy ; Task analysis ; Training ; Training data</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-11, Vol.PP (11), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-cfd47dc53ee8c8adf917ffc4f19e415a7087fa9580b98b20075e4d93f949e8253</cites><orcidid>0000-0002-6121-5529 ; 0000-0002-2730-0543 ; 0000-0001-7701-234X ; 0000-0002-4435-1692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10195951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10195951$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37498756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Shuai</creatorcontrib><creatorcontrib>Li, Wanhua</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Lu, Jiwen</creatorcontrib><title>STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description><![CDATA[Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-based methods suffer from the limitation of training data scale, while local-based ones are inefficient for inference due to the use of numerous overlapped subgraphs. Previous approaches fail to tackle these two challenges simultaneously. To address the dilemma of large-scale training and efficient inference, we propose the STructure-AwaRe Face Clustering (STAR-FC) method. Specifically, we design a structure-preserving subgraph sampling strategy to explore the power of large-scale training data, which can increase the training data scale from <inline-formula><tex-math notation="LaTeX">{10^{5}}</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">{10^{7}}</tex-math></inline-formula>. On this basis, a novel hierarchical GCN training paradigm is further proposed for better capturing the dynamic local structure. During inference, the STAR-FC performs efficient full-graph clustering with two steps: graph parsing and graph refinement. And the concept of node intimacy is introduced in the second step to mine the local structural information, where a calibration module is further proposed for fairer edge scores. The STAR-FC gets 93.21 pairwise F-score on standard partial MS1M within 312 seconds, which far surpasses the state-of-the-arts while maintaining high inference efficiency. Furthermore, we are the first to train on an ultra-large-scale graph with 20 M nodes, and achieve superior inference results on 12 M testing data. Overall, as a simple and effective method, the proposed STAR-FC provides a strong baseline for large-scale face clustering. Code is available in https://github.com/sstzal/STAR-FC .]]></description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Face clustering</subject><subject>Face recognition</subject><subject>Faces</subject><subject>graph convolutional network</subject><subject>Graph theory</subject><subject>hierarchical GCN training</subject><subject>Inference</subject><subject>large-scale graph</subject><subject>node intimacy</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0EtLAzEUhuEgitbLHxCRATduUnNtctyValWoKLauhzRzopVppyYziP_eqa0irrJ5zkd4CTnmrMs5g4vJY__-riuYkF0pAERPbpEOBwlUagnbpMN4T1Brhd0j-ym9McaVZnKX7EmjwBrd65Cr8aT_RIeDy2xcx8bXTUTa_3ARs6HzmA3KJtUYZ4uXrFpkz2UdHR25-IJ07F2J2U10y9d0SHaCKxMebd4D8jy8ngxu6ejh5m7QH1EvmaypD4UyhdcS0XrrigDchOBV4ICKa2eYNcGBtmwKdioYMxpVATKAArRCywNyvt5dxuq9wVTn81nyWJZugVWTcmG1UrKnFLT07B99q5q4aH_XKiNaBka2SqyVj1VKEUO-jLO5i585Z_mqcf7dOF81zjeN26PTzXQznWPxe_ITtQUnazBDxD-LHDRoLr8AYBV9-A</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Shen, Shuai</creator><creator>Li, Wanhua</creator><creator>Zhu, Zheng</creator><creator>Zhou, Jie</creator><creator>Lu, Jiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6121-5529</orcidid><orcidid>https://orcid.org/0000-0002-2730-0543</orcidid><orcidid>https://orcid.org/0000-0001-7701-234X</orcidid><orcidid>https://orcid.org/0000-0002-4435-1692</orcidid></search><sort><creationdate>20231101</creationdate><title>STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs</title><author>Shen, Shuai ; Li, Wanhua ; Zhu, Zheng ; Zhou, Jie ; Lu, Jiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-cfd47dc53ee8c8adf917ffc4f19e415a7087fa9580b98b20075e4d93f949e8253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Face clustering</topic><topic>Face recognition</topic><topic>Faces</topic><topic>graph convolutional network</topic><topic>Graph theory</topic><topic>hierarchical GCN training</topic><topic>Inference</topic><topic>large-scale graph</topic><topic>node intimacy</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Shuai</creatorcontrib><creatorcontrib>Li, Wanhua</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Lu, Jiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Shuai</au><au>Li, Wanhua</au><au>Zhu, Zheng</au><au>Zhou, Jie</au><au>Lu, Jiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>PP</volume><issue>11</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract><![CDATA[Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-based methods suffer from the limitation of training data scale, while local-based ones are inefficient for inference due to the use of numerous overlapped subgraphs. Previous approaches fail to tackle these two challenges simultaneously. To address the dilemma of large-scale training and efficient inference, we propose the STructure-AwaRe Face Clustering (STAR-FC) method. Specifically, we design a structure-preserving subgraph sampling strategy to explore the power of large-scale training data, which can increase the training data scale from <inline-formula><tex-math notation="LaTeX">{10^{5}}</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">{10^{7}}</tex-math></inline-formula>. On this basis, a novel hierarchical GCN training paradigm is further proposed for better capturing the dynamic local structure. During inference, the STAR-FC performs efficient full-graph clustering with two steps: graph parsing and graph refinement. And the concept of node intimacy is introduced in the second step to mine the local structural information, where a calibration module is further proposed for fairer edge scores. The STAR-FC gets 93.21 pairwise F-score on standard partial MS1M within 312 seconds, which far surpasses the state-of-the-arts while maintaining high inference efficiency. Furthermore, we are the first to train on an ultra-large-scale graph with 20 M nodes, and achieve superior inference results on 12 M testing data. Overall, as a simple and effective method, the proposed STAR-FC provides a strong baseline for large-scale face clustering. Code is available in https://github.com/sstzal/STAR-FC .]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>37498756</pmid><doi>10.1109/TPAMI.2023.3299263</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6121-5529</orcidid><orcidid>https://orcid.org/0000-0002-2730-0543</orcidid><orcidid>https://orcid.org/0000-0001-7701-234X</orcidid><orcidid>https://orcid.org/0000-0002-4435-1692</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-11, Vol.PP (11), p.1-15
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2023_3299263
source IEEE Electronic Library (IEL)
subjects Clustering
Clustering algorithms
Face clustering
Face recognition
Faces
graph convolutional network
Graph theory
hierarchical GCN training
Inference
large-scale graph
node intimacy
Task analysis
Training
Training data
title STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STAR-FC:%20Structure-Aware%20Face%20Clustering%20on%20Ultra-Large-Scale%20Graphs&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Shen,%20Shuai&rft.date=2023-11-01&rft.volume=PP&rft.issue=11&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3299263&rft_dat=%3Cproquest_RIE%3E2854436449%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872443973&rft_id=info:pmid/37498756&rft_ieee_id=10195951&rfr_iscdi=true