STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs
Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-ba...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-11, Vol.PP (11), p.1-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | PP |
creator | Shen, Shuai Li, Wanhua Zhu, Zheng Zhou, Jie Lu, Jiwen |
description | Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-based methods suffer from the limitation of training data scale, while local-based ones are inefficient for inference due to the use of numerous overlapped subgraphs. Previous approaches fail to tackle these two challenges simultaneously. To address the dilemma of large-scale training and efficient inference, we propose the STructure-AwaRe Face Clustering (STAR-FC) method. Specifically, we design a structure-preserving subgraph sampling strategy to explore the power of large-scale training data, which can increase the training data scale from {10^{5}} to {10^{7}}. On this basis, a novel hierarchical GCN training paradigm is further proposed for better capturing the dynamic local structure. During inference, the STAR-FC performs efficient full-graph clustering with two steps: graph parsing and graph refinement. And the concept of node intimacy is introduced in the second step to mine the local structural information, where a calibration module is further proposed for fairer edge scores. The STAR-FC gets 93.21 pairwise F-score on standard partial MS1M within 312 seconds, which far surpasses the state-of-the-arts while maintaining high inference efficiency. Furthermore, we are the first to train on an ultra-large-scale graph with 20 M nodes, and achieve superior inference results on 12 M testing data. Overall, as a simple and effective method, the proposed STAR-FC provides a strong baseline for large-scale face clustering. Code is available in https://github.com/sstzal/STAR-FC . |
doi_str_mv | 10.1109/TPAMI.2023.3299263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3299263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10195951</ieee_id><sourcerecordid>2854436449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-cfd47dc53ee8c8adf917ffc4f19e415a7087fa9580b98b20075e4d93f949e8253</originalsourceid><addsrcrecordid>eNpd0EtLAzEUhuEgitbLHxCRATduUnNtctyValWoKLauhzRzopVppyYziP_eqa0irrJ5zkd4CTnmrMs5g4vJY__-riuYkF0pAERPbpEOBwlUagnbpMN4T1Brhd0j-ym9McaVZnKX7EmjwBrd65Cr8aT_RIeDy2xcx8bXTUTa_3ARs6HzmA3KJtUYZ4uXrFpkz2UdHR25-IJ07F2J2U10y9d0SHaCKxMebd4D8jy8ngxu6ejh5m7QH1EvmaypD4UyhdcS0XrrigDchOBV4ICKa2eYNcGBtmwKdioYMxpVATKAArRCywNyvt5dxuq9wVTn81nyWJZugVWTcmG1UrKnFLT07B99q5q4aH_XKiNaBka2SqyVj1VKEUO-jLO5i585Z_mqcf7dOF81zjeN26PTzXQznWPxe_ITtQUnazBDxD-LHDRoLr8AYBV9-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872443973</pqid></control><display><type>article</type><title>STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Shuai ; Li, Wanhua ; Zhu, Zheng ; Zhou, Jie ; Lu, Jiwen</creator><creatorcontrib>Shen, Shuai ; Li, Wanhua ; Zhu, Zheng ; Zhou, Jie ; Lu, Jiwen</creatorcontrib><description><![CDATA[Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-based methods suffer from the limitation of training data scale, while local-based ones are inefficient for inference due to the use of numerous overlapped subgraphs. Previous approaches fail to tackle these two challenges simultaneously. To address the dilemma of large-scale training and efficient inference, we propose the STructure-AwaRe Face Clustering (STAR-FC) method. Specifically, we design a structure-preserving subgraph sampling strategy to explore the power of large-scale training data, which can increase the training data scale from <inline-formula><tex-math notation="LaTeX">{10^{5}}</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">{10^{7}}</tex-math></inline-formula>. On this basis, a novel hierarchical GCN training paradigm is further proposed for better capturing the dynamic local structure. During inference, the STAR-FC performs efficient full-graph clustering with two steps: graph parsing and graph refinement. And the concept of node intimacy is introduced in the second step to mine the local structural information, where a calibration module is further proposed for fairer edge scores. The STAR-FC gets 93.21 pairwise F-score on standard partial MS1M within 312 seconds, which far surpasses the state-of-the-arts while maintaining high inference efficiency. Furthermore, we are the first to train on an ultra-large-scale graph with 20 M nodes, and achieve superior inference results on 12 M testing data. Overall, as a simple and effective method, the proposed STAR-FC provides a strong baseline for large-scale face clustering. Code is available in https://github.com/sstzal/STAR-FC .]]></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3299263</identifier><identifier>PMID: 37498756</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Clustering ; Clustering algorithms ; Face clustering ; Face recognition ; Faces ; graph convolutional network ; Graph theory ; hierarchical GCN training ; Inference ; large-scale graph ; node intimacy ; Task analysis ; Training ; Training data</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-11, Vol.PP (11), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-cfd47dc53ee8c8adf917ffc4f19e415a7087fa9580b98b20075e4d93f949e8253</cites><orcidid>0000-0002-6121-5529 ; 0000-0002-2730-0543 ; 0000-0001-7701-234X ; 0000-0002-4435-1692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10195951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10195951$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37498756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Shuai</creatorcontrib><creatorcontrib>Li, Wanhua</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Lu, Jiwen</creatorcontrib><title>STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description><![CDATA[Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-based methods suffer from the limitation of training data scale, while local-based ones are inefficient for inference due to the use of numerous overlapped subgraphs. Previous approaches fail to tackle these two challenges simultaneously. To address the dilemma of large-scale training and efficient inference, we propose the STructure-AwaRe Face Clustering (STAR-FC) method. Specifically, we design a structure-preserving subgraph sampling strategy to explore the power of large-scale training data, which can increase the training data scale from <inline-formula><tex-math notation="LaTeX">{10^{5}}</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">{10^{7}}</tex-math></inline-formula>. On this basis, a novel hierarchical GCN training paradigm is further proposed for better capturing the dynamic local structure. During inference, the STAR-FC performs efficient full-graph clustering with two steps: graph parsing and graph refinement. And the concept of node intimacy is introduced in the second step to mine the local structural information, where a calibration module is further proposed for fairer edge scores. The STAR-FC gets 93.21 pairwise F-score on standard partial MS1M within 312 seconds, which far surpasses the state-of-the-arts while maintaining high inference efficiency. Furthermore, we are the first to train on an ultra-large-scale graph with 20 M nodes, and achieve superior inference results on 12 M testing data. Overall, as a simple and effective method, the proposed STAR-FC provides a strong baseline for large-scale face clustering. Code is available in https://github.com/sstzal/STAR-FC .]]></description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Face clustering</subject><subject>Face recognition</subject><subject>Faces</subject><subject>graph convolutional network</subject><subject>Graph theory</subject><subject>hierarchical GCN training</subject><subject>Inference</subject><subject>large-scale graph</subject><subject>node intimacy</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0EtLAzEUhuEgitbLHxCRATduUnNtctyValWoKLauhzRzopVppyYziP_eqa0irrJ5zkd4CTnmrMs5g4vJY__-riuYkF0pAERPbpEOBwlUagnbpMN4T1Brhd0j-ym9McaVZnKX7EmjwBrd65Cr8aT_RIeDy2xcx8bXTUTa_3ARs6HzmA3KJtUYZ4uXrFpkz2UdHR25-IJ07F2J2U10y9d0SHaCKxMebd4D8jy8ngxu6ejh5m7QH1EvmaypD4UyhdcS0XrrigDchOBV4ICKa2eYNcGBtmwKdioYMxpVATKAArRCywNyvt5dxuq9wVTn81nyWJZugVWTcmG1UrKnFLT07B99q5q4aH_XKiNaBka2SqyVj1VKEUO-jLO5i585Z_mqcf7dOF81zjeN26PTzXQznWPxe_ITtQUnazBDxD-LHDRoLr8AYBV9-A</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Shen, Shuai</creator><creator>Li, Wanhua</creator><creator>Zhu, Zheng</creator><creator>Zhou, Jie</creator><creator>Lu, Jiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6121-5529</orcidid><orcidid>https://orcid.org/0000-0002-2730-0543</orcidid><orcidid>https://orcid.org/0000-0001-7701-234X</orcidid><orcidid>https://orcid.org/0000-0002-4435-1692</orcidid></search><sort><creationdate>20231101</creationdate><title>STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs</title><author>Shen, Shuai ; Li, Wanhua ; Zhu, Zheng ; Zhou, Jie ; Lu, Jiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-cfd47dc53ee8c8adf917ffc4f19e415a7087fa9580b98b20075e4d93f949e8253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Face clustering</topic><topic>Face recognition</topic><topic>Faces</topic><topic>graph convolutional network</topic><topic>Graph theory</topic><topic>hierarchical GCN training</topic><topic>Inference</topic><topic>large-scale graph</topic><topic>node intimacy</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Shuai</creatorcontrib><creatorcontrib>Li, Wanhua</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Lu, Jiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Shuai</au><au>Li, Wanhua</au><au>Zhu, Zheng</au><au>Zhou, Jie</au><au>Lu, Jiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>PP</volume><issue>11</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract><![CDATA[Face clustering is a promising method for annotating unlabeled face images. Recent supervised approaches have boosted the face clustering accuracy greatly, however their performance is still far from satisfactory. These methods can be roughly divided into global-based and local-based ones. Global-based methods suffer from the limitation of training data scale, while local-based ones are inefficient for inference due to the use of numerous overlapped subgraphs. Previous approaches fail to tackle these two challenges simultaneously. To address the dilemma of large-scale training and efficient inference, we propose the STructure-AwaRe Face Clustering (STAR-FC) method. Specifically, we design a structure-preserving subgraph sampling strategy to explore the power of large-scale training data, which can increase the training data scale from <inline-formula><tex-math notation="LaTeX">{10^{5}}</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">{10^{7}}</tex-math></inline-formula>. On this basis, a novel hierarchical GCN training paradigm is further proposed for better capturing the dynamic local structure. During inference, the STAR-FC performs efficient full-graph clustering with two steps: graph parsing and graph refinement. And the concept of node intimacy is introduced in the second step to mine the local structural information, where a calibration module is further proposed for fairer edge scores. The STAR-FC gets 93.21 pairwise F-score on standard partial MS1M within 312 seconds, which far surpasses the state-of-the-arts while maintaining high inference efficiency. Furthermore, we are the first to train on an ultra-large-scale graph with 20 M nodes, and achieve superior inference results on 12 M testing data. Overall, as a simple and effective method, the proposed STAR-FC provides a strong baseline for large-scale face clustering. Code is available in https://github.com/sstzal/STAR-FC .]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>37498756</pmid><doi>10.1109/TPAMI.2023.3299263</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6121-5529</orcidid><orcidid>https://orcid.org/0000-0002-2730-0543</orcidid><orcidid>https://orcid.org/0000-0001-7701-234X</orcidid><orcidid>https://orcid.org/0000-0002-4435-1692</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-11, Vol.PP (11), p.1-15 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2023_3299263 |
source | IEEE Electronic Library (IEL) |
subjects | Clustering Clustering algorithms Face clustering Face recognition Faces graph convolutional network Graph theory hierarchical GCN training Inference large-scale graph node intimacy Task analysis Training Training data |
title | STAR-FC: Structure-Aware Face Clustering on Ultra-Large-Scale Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STAR-FC:%20Structure-Aware%20Face%20Clustering%20on%20Ultra-Large-Scale%20Graphs&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Shen,%20Shuai&rft.date=2023-11-01&rft.volume=PP&rft.issue=11&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3299263&rft_dat=%3Cproquest_RIE%3E2854436449%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872443973&rft_id=info:pmid/37498756&rft_ieee_id=10195951&rfr_iscdi=true |