Conformer: Local Features Coupling Global Representations for Recognition and Detection
With convolution operations, Convolutional Neural Networks (CNNs) are good at extracting local features but experience difficulty to capture global representations. With cascaded self-attention modules, vision transformers can capture long-distance feature dependencies but unfortunately deteriorate...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-08, Vol.45 (8), p.1-15 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Peng, Zhiliang Guo, Zonghao Huang, Wei Wang, Yaowei Xie, Lingxi Jiao, Jianbin Tian, Qi Ye, Qixiang |
description | With convolution operations, Convolutional Neural Networks (CNNs) are good at extracting local features but experience difficulty to capture global representations. With cascaded self-attention modules, vision transformers can capture long-distance feature dependencies but unfortunately deteriorate local feature details. In this paper, we propose a hybrid network structure, termed Conformer, to take both advantages of convolution operations and self-attention mechanisms for enhanced representation learning. Conformer roots in feature coupling of CNN local features and transformer global representations under different resolutions in an interactive fashion. Conformer adopts a dual structure so that local details and global dependencies are retained to the maximum extent. We also propose a Conformer-based detector (ConformerDet), which learns to predict and refine object proposals, by performing region-level feature coupling in an augmented cross-attention fashion. Experiments on ImageNet and MS COCO datasets validate Conformer's superiority for visual recognition and object detection, demonstrating its potential to be a general backbone network. Code is available at https://github.com/pengzhiliang/Conformer . |
doi_str_mv | 10.1109/TPAMI.2023.3243048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2023_3243048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10040235</ieee_id><sourcerecordid>2797150083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ebc3430feea7ec59cbc5abf7841033c984eb9aff7b5e31ac86c28fee7b1bcef23</originalsourceid><addsrcrecordid>eNpdkNFKwzAUhoMobk5fQEQK3njTmeS0a-rdqG4OJopMvAxJdjoqXTOT9sK3N3NTxKuQc77_5_ARcs7okDGa3yyex4-zIacchsAToIk4IH2WQx5DCvkh6VM24rEQXPTIiffvlLIkpXBMepBRzgWM-uStsE1p3RrdbTS3RtXRBFXbOfRRYbtNXTWraFpbHRYvuAljbFrVVrbxUYiFmbGrptoOItUsozts0Wx_p-SoVLXHs_07IK-T-0XxEM-fprNiPI8NpLyNURsIl5eIKkOT5kabVOkyEwmjACYXCepclWWmUwSmjBgZLgKdaaYNlhwG5HrXu3H2o0PfynXlDda1atB2XvIsz1hKqYCAXv1D323nmnCdDC4CJBiwQPEdZZz13mEpN65aK_cpGZVb7fJbu9xql3vtIXS5r-70Gpe_kR_PAbjYARUi_mmkSahJ4QtTxYf5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831508131</pqid></control><display><type>article</type><title>Conformer: Local Features Coupling Global Representations for Recognition and Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Zhiliang ; Guo, Zonghao ; Huang, Wei ; Wang, Yaowei ; Xie, Lingxi ; Jiao, Jianbin ; Tian, Qi ; Ye, Qixiang</creator><creatorcontrib>Peng, Zhiliang ; Guo, Zonghao ; Huang, Wei ; Wang, Yaowei ; Xie, Lingxi ; Jiao, Jianbin ; Tian, Qi ; Ye, Qixiang</creatorcontrib><description>With convolution operations, Convolutional Neural Networks (CNNs) are good at extracting local features but experience difficulty to capture global representations. With cascaded self-attention modules, vision transformers can capture long-distance feature dependencies but unfortunately deteriorate local feature details. In this paper, we propose a hybrid network structure, termed Conformer, to take both advantages of convolution operations and self-attention mechanisms for enhanced representation learning. Conformer roots in feature coupling of CNN local features and transformer global representations under different resolutions in an interactive fashion. Conformer adopts a dual structure so that local details and global dependencies are retained to the maximum extent. We also propose a Conformer-based detector (ConformerDet), which learns to predict and refine object proposals, by performing region-level feature coupling in an augmented cross-attention fashion. Experiments on ImageNet and MS COCO datasets validate Conformer's superiority for visual recognition and object detection, demonstrating its potential to be a general backbone network. Code is available at https://github.com/pengzhiliang/Conformer .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3243048</identifier><identifier>PMID: 37022836</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Computer networks ; Convolution ; Coupling ; Couplings ; Detectors ; Feature extraction ; Feature Fusion ; Image Recognition ; Machine learning ; Object detection ; Object recognition ; Representations ; Transformers ; Vision Transformer ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-08, Vol.45 (8), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ebc3430feea7ec59cbc5abf7841033c984eb9aff7b5e31ac86c28fee7b1bcef23</citedby><cites>FETCH-LOGICAL-c352t-ebc3430feea7ec59cbc5abf7841033c984eb9aff7b5e31ac86c28fee7b1bcef23</cites><orcidid>0000-0002-7252-5047 ; 0000-0003-1215-6259 ; 0000-0003-0454-3929 ; 0000-0003-2197-9038 ; 0000-0002-6643-9329 ; 0000-0001-8492-2130 ; 0000-0003-4831-9451 ; 0000-0001-8899-0069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10040235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10040235$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37022836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Zhiliang</creatorcontrib><creatorcontrib>Guo, Zonghao</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wang, Yaowei</creatorcontrib><creatorcontrib>Xie, Lingxi</creatorcontrib><creatorcontrib>Jiao, Jianbin</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><title>Conformer: Local Features Coupling Global Representations for Recognition and Detection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>With convolution operations, Convolutional Neural Networks (CNNs) are good at extracting local features but experience difficulty to capture global representations. With cascaded self-attention modules, vision transformers can capture long-distance feature dependencies but unfortunately deteriorate local feature details. In this paper, we propose a hybrid network structure, termed Conformer, to take both advantages of convolution operations and self-attention mechanisms for enhanced representation learning. Conformer roots in feature coupling of CNN local features and transformer global representations under different resolutions in an interactive fashion. Conformer adopts a dual structure so that local details and global dependencies are retained to the maximum extent. We also propose a Conformer-based detector (ConformerDet), which learns to predict and refine object proposals, by performing region-level feature coupling in an augmented cross-attention fashion. Experiments on ImageNet and MS COCO datasets validate Conformer's superiority for visual recognition and object detection, demonstrating its potential to be a general backbone network. Code is available at https://github.com/pengzhiliang/Conformer .</description><subject>Artificial neural networks</subject><subject>Computer networks</subject><subject>Convolution</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Feature Fusion</subject><subject>Image Recognition</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Representations</subject><subject>Transformers</subject><subject>Vision Transformer</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNFKwzAUhoMobk5fQEQK3njTmeS0a-rdqG4OJopMvAxJdjoqXTOT9sK3N3NTxKuQc77_5_ARcs7okDGa3yyex4-zIacchsAToIk4IH2WQx5DCvkh6VM24rEQXPTIiffvlLIkpXBMepBRzgWM-uStsE1p3RrdbTS3RtXRBFXbOfRRYbtNXTWraFpbHRYvuAljbFrVVrbxUYiFmbGrptoOItUsozts0Wx_p-SoVLXHs_07IK-T-0XxEM-fprNiPI8NpLyNURsIl5eIKkOT5kabVOkyEwmjACYXCepclWWmUwSmjBgZLgKdaaYNlhwG5HrXu3H2o0PfynXlDda1atB2XvIsz1hKqYCAXv1D323nmnCdDC4CJBiwQPEdZZz13mEpN65aK_cpGZVb7fJbu9xql3vtIXS5r-70Gpe_kR_PAbjYARUi_mmkSahJ4QtTxYf5</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Peng, Zhiliang</creator><creator>Guo, Zonghao</creator><creator>Huang, Wei</creator><creator>Wang, Yaowei</creator><creator>Xie, Lingxi</creator><creator>Jiao, Jianbin</creator><creator>Tian, Qi</creator><creator>Ye, Qixiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7252-5047</orcidid><orcidid>https://orcid.org/0000-0003-1215-6259</orcidid><orcidid>https://orcid.org/0000-0003-0454-3929</orcidid><orcidid>https://orcid.org/0000-0003-2197-9038</orcidid><orcidid>https://orcid.org/0000-0002-6643-9329</orcidid><orcidid>https://orcid.org/0000-0001-8492-2130</orcidid><orcidid>https://orcid.org/0000-0003-4831-9451</orcidid><orcidid>https://orcid.org/0000-0001-8899-0069</orcidid></search><sort><creationdate>20230801</creationdate><title>Conformer: Local Features Coupling Global Representations for Recognition and Detection</title><author>Peng, Zhiliang ; Guo, Zonghao ; Huang, Wei ; Wang, Yaowei ; Xie, Lingxi ; Jiao, Jianbin ; Tian, Qi ; Ye, Qixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ebc3430feea7ec59cbc5abf7841033c984eb9aff7b5e31ac86c28fee7b1bcef23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Computer networks</topic><topic>Convolution</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Feature Fusion</topic><topic>Image Recognition</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Representations</topic><topic>Transformers</topic><topic>Vision Transformer</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zhiliang</creatorcontrib><creatorcontrib>Guo, Zonghao</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wang, Yaowei</creatorcontrib><creatorcontrib>Xie, Lingxi</creatorcontrib><creatorcontrib>Jiao, Jianbin</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Zhiliang</au><au>Guo, Zonghao</au><au>Huang, Wei</au><au>Wang, Yaowei</au><au>Xie, Lingxi</au><au>Jiao, Jianbin</au><au>Tian, Qi</au><au>Ye, Qixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformer: Local Features Coupling Global Representations for Recognition and Detection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>45</volume><issue>8</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>With convolution operations, Convolutional Neural Networks (CNNs) are good at extracting local features but experience difficulty to capture global representations. With cascaded self-attention modules, vision transformers can capture long-distance feature dependencies but unfortunately deteriorate local feature details. In this paper, we propose a hybrid network structure, termed Conformer, to take both advantages of convolution operations and self-attention mechanisms for enhanced representation learning. Conformer roots in feature coupling of CNN local features and transformer global representations under different resolutions in an interactive fashion. Conformer adopts a dual structure so that local details and global dependencies are retained to the maximum extent. We also propose a Conformer-based detector (ConformerDet), which learns to predict and refine object proposals, by performing region-level feature coupling in an augmented cross-attention fashion. Experiments on ImageNet and MS COCO datasets validate Conformer's superiority for visual recognition and object detection, demonstrating its potential to be a general backbone network. Code is available at https://github.com/pengzhiliang/Conformer .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37022836</pmid><doi>10.1109/TPAMI.2023.3243048</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7252-5047</orcidid><orcidid>https://orcid.org/0000-0003-1215-6259</orcidid><orcidid>https://orcid.org/0000-0003-0454-3929</orcidid><orcidid>https://orcid.org/0000-0003-2197-9038</orcidid><orcidid>https://orcid.org/0000-0002-6643-9329</orcidid><orcidid>https://orcid.org/0000-0001-8492-2130</orcidid><orcidid>https://orcid.org/0000-0003-4831-9451</orcidid><orcidid>https://orcid.org/0000-0001-8899-0069</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-08, Vol.45 (8), p.1-15 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2023_3243048 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Computer networks Convolution Coupling Couplings Detectors Feature extraction Feature Fusion Image Recognition Machine learning Object detection Object recognition Representations Transformers Vision Transformer Visualization |
title | Conformer: Local Features Coupling Global Representations for Recognition and Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformer:%20Local%20Features%20Coupling%20Global%20Representations%20for%20Recognition%20and%20Detection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Peng,%20Zhiliang&rft.date=2023-08-01&rft.volume=45&rft.issue=8&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3243048&rft_dat=%3Cproquest_RIE%3E2797150083%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831508131&rft_id=info:pmid/37022836&rft_ieee_id=10040235&rfr_iscdi=true |