Reducing Spatial Labeling Redundancy for Active Semi-Supervised Crowd Counting
Labeling is onerous for crowd counting as it should annotate each individual in crowd images. Recently, several methods have been proposed for semi-supervised crowd counting to reduce the labeling efforts. Given a limited labeling budget, they typically select a few crowd images and densely label al...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-07, Vol.45 (7), p.9248-9255 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9255 |
---|---|
container_issue | 7 |
container_start_page | 9248 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Liu, Yongtuo Ren, Sucheng Chai, Liangyu Wu, Hanjie Xu, Dan Qin, Jing He, Shengfeng |
description | Labeling is onerous for crowd counting as it should annotate each individual in crowd images. Recently, several methods have been proposed for semi-supervised crowd counting to reduce the labeling efforts. Given a limited labeling budget, they typically select a few crowd images and densely label all individuals in each of them. Despite the promising results, we argue the None-or-All labeling strategy is suboptimal as the densely labeled individuals in each crowd image usually appear similar while the massive unlabeled crowd images may contain entirely diverse individuals. To this end, we propose to break the labeling chain of previous methods and make the first attempt to reduce spatial labeling redundancy for semi-supervised crowd counting. First, instead of annotating all the regions in each crowd image, we propose to annotate the representative ones only. We analyze the region representativeness from both vertical and horizontal directions of initially estimated density maps, and formulate them as cluster centers of Gaussian Mixture Models. Additionally, to leverage the rich unlabeled regions, we exploit the similarities among individuals in each crowd image to directly supervise the unlabeled regions via feature propagation instead of the error-prone label propagation employed in the previous methods. In this way, we can transfer the original spatial labeling redundancy caused by individual similarities to effective supervision signals on the unlabeled regions. Extensive experiments on the widely-used benchmarks demonstrate that our method can outperform previous best approaches by a large margin. |
doi_str_mv | 10.1109/TPAMI.2022.3232712 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2022_3232712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10002302</ieee_id><sourcerecordid>2796161084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b6d01485ca7d3e6c6ef334603b03ed6289ff804be729d050ebdd2771abfe5ab93</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOj_-gIgUvPGm8-RkTdPLMfyC-YHT65A2p1Lp2pm0E_-9mZsiQkjg5HlfDg9jxxyGnEN28fw4vrsdIiAOBQpMOW6xAc9EFotEZNtsAFxirBSqPbbv_RsAHyUgdtmeSIEnEtMBu38i2xdV8xrNFqarTB1NTU71arD6aaxpis-obF00LrpqSdGM5lU86xfklpUnG01c-xHutm-6EDpkO6WpPR1t3gP2cnX5PLmJpw_Xt5PxNC5Egl2cSxt2UUlhUitIFpJKIUYSRA6CrESVlaWCUU4pZhYSoNxaTFNu8pISk2figJ2vexeufe_Jd3pe-YLq2jTU9l5jmkkuOahRQM_-oW9t75qwnUaFgivOpQoUrqnCtd47KvXCVXPjPjUHvbKtv23rlW29sR1Cp5vqPp-T_Y386A3AyRqoiOhPIwCKcL4AEQaC6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823181168</pqid></control><display><type>article</type><title>Reducing Spatial Labeling Redundancy for Active Semi-Supervised Crowd Counting</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yongtuo ; Ren, Sucheng ; Chai, Liangyu ; Wu, Hanjie ; Xu, Dan ; Qin, Jing ; He, Shengfeng</creator><creatorcontrib>Liu, Yongtuo ; Ren, Sucheng ; Chai, Liangyu ; Wu, Hanjie ; Xu, Dan ; Qin, Jing ; He, Shengfeng</creatorcontrib><description>Labeling is onerous for crowd counting as it should annotate each individual in crowd images. Recently, several methods have been proposed for semi-supervised crowd counting to reduce the labeling efforts. Given a limited labeling budget, they typically select a few crowd images and densely label all individuals in each of them. Despite the promising results, we argue the None-or-All labeling strategy is suboptimal as the densely labeled individuals in each crowd image usually appear similar while the massive unlabeled crowd images may contain entirely diverse individuals. To this end, we propose to break the labeling chain of previous methods and make the first attempt to reduce spatial labeling redundancy for semi-supervised crowd counting. First, instead of annotating all the regions in each crowd image, we propose to annotate the representative ones only. We analyze the region representativeness from both vertical and horizontal directions of initially estimated density maps, and formulate them as cluster centers of Gaussian Mixture Models. Additionally, to leverage the rich unlabeled regions, we exploit the similarities among individuals in each crowd image to directly supervise the unlabeled regions via feature propagation instead of the error-prone label propagation employed in the previous methods. In this way, we can transfer the original spatial labeling redundancy caused by individual similarities to effective supervision signals on the unlabeled regions. Extensive experiments on the widely-used benchmarks demonstrate that our method can outperform previous best approaches by a large margin.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3232712</identifier><identifier>PMID: 37015627</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Crowd counting ; Feature extraction ; Head ; Labeling ; Labelling ; Probabilistic models ; Propagation ; Redundancy ; semi-supervised learning ; Similarity ; spatial labeling redundancy ; Technological innovation ; Termination of employment ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-07, Vol.45 (7), p.9248-9255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b6d01485ca7d3e6c6ef334603b03ed6289ff804be729d050ebdd2771abfe5ab93</citedby><cites>FETCH-LOGICAL-c352t-b6d01485ca7d3e6c6ef334603b03ed6289ff804be729d050ebdd2771abfe5ab93</cites><orcidid>0000-0002-2961-0860 ; 0000-0003-4730-8435 ; 0000-0003-0136-9603 ; 0000-0002-3802-4644 ; 0000-0001-5953-2771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10002302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10002302$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37015627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yongtuo</creatorcontrib><creatorcontrib>Ren, Sucheng</creatorcontrib><creatorcontrib>Chai, Liangyu</creatorcontrib><creatorcontrib>Wu, Hanjie</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><title>Reducing Spatial Labeling Redundancy for Active Semi-Supervised Crowd Counting</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Labeling is onerous for crowd counting as it should annotate each individual in crowd images. Recently, several methods have been proposed for semi-supervised crowd counting to reduce the labeling efforts. Given a limited labeling budget, they typically select a few crowd images and densely label all individuals in each of them. Despite the promising results, we argue the None-or-All labeling strategy is suboptimal as the densely labeled individuals in each crowd image usually appear similar while the massive unlabeled crowd images may contain entirely diverse individuals. To this end, we propose to break the labeling chain of previous methods and make the first attempt to reduce spatial labeling redundancy for semi-supervised crowd counting. First, instead of annotating all the regions in each crowd image, we propose to annotate the representative ones only. We analyze the region representativeness from both vertical and horizontal directions of initially estimated density maps, and formulate them as cluster centers of Gaussian Mixture Models. Additionally, to leverage the rich unlabeled regions, we exploit the similarities among individuals in each crowd image to directly supervise the unlabeled regions via feature propagation instead of the error-prone label propagation employed in the previous methods. In this way, we can transfer the original spatial labeling redundancy caused by individual similarities to effective supervision signals on the unlabeled regions. Extensive experiments on the widely-used benchmarks demonstrate that our method can outperform previous best approaches by a large margin.</description><subject>Crowd counting</subject><subject>Feature extraction</subject><subject>Head</subject><subject>Labeling</subject><subject>Labelling</subject><subject>Probabilistic models</subject><subject>Propagation</subject><subject>Redundancy</subject><subject>semi-supervised learning</subject><subject>Similarity</subject><subject>spatial labeling redundancy</subject><subject>Technological innovation</subject><subject>Termination of employment</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMoOj_-gIgUvPGm8-RkTdPLMfyC-YHT65A2p1Lp2pm0E_-9mZsiQkjg5HlfDg9jxxyGnEN28fw4vrsdIiAOBQpMOW6xAc9EFotEZNtsAFxirBSqPbbv_RsAHyUgdtmeSIEnEtMBu38i2xdV8xrNFqarTB1NTU71arD6aaxpis-obF00LrpqSdGM5lU86xfklpUnG01c-xHutm-6EDpkO6WpPR1t3gP2cnX5PLmJpw_Xt5PxNC5Egl2cSxt2UUlhUitIFpJKIUYSRA6CrESVlaWCUU4pZhYSoNxaTFNu8pISk2figJ2vexeufe_Jd3pe-YLq2jTU9l5jmkkuOahRQM_-oW9t75qwnUaFgivOpQoUrqnCtd47KvXCVXPjPjUHvbKtv23rlW29sR1Cp5vqPp-T_Y386A3AyRqoiOhPIwCKcL4AEQaC6Q</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Liu, Yongtuo</creator><creator>Ren, Sucheng</creator><creator>Chai, Liangyu</creator><creator>Wu, Hanjie</creator><creator>Xu, Dan</creator><creator>Qin, Jing</creator><creator>He, Shengfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0003-4730-8435</orcidid><orcidid>https://orcid.org/0000-0003-0136-9603</orcidid><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0000-0001-5953-2771</orcidid></search><sort><creationdate>20230701</creationdate><title>Reducing Spatial Labeling Redundancy for Active Semi-Supervised Crowd Counting</title><author>Liu, Yongtuo ; Ren, Sucheng ; Chai, Liangyu ; Wu, Hanjie ; Xu, Dan ; Qin, Jing ; He, Shengfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b6d01485ca7d3e6c6ef334603b03ed6289ff804be729d050ebdd2771abfe5ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crowd counting</topic><topic>Feature extraction</topic><topic>Head</topic><topic>Labeling</topic><topic>Labelling</topic><topic>Probabilistic models</topic><topic>Propagation</topic><topic>Redundancy</topic><topic>semi-supervised learning</topic><topic>Similarity</topic><topic>spatial labeling redundancy</topic><topic>Technological innovation</topic><topic>Termination of employment</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yongtuo</creatorcontrib><creatorcontrib>Ren, Sucheng</creatorcontrib><creatorcontrib>Chai, Liangyu</creatorcontrib><creatorcontrib>Wu, Hanjie</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yongtuo</au><au>Ren, Sucheng</au><au>Chai, Liangyu</au><au>Wu, Hanjie</au><au>Xu, Dan</au><au>Qin, Jing</au><au>He, Shengfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Spatial Labeling Redundancy for Active Semi-Supervised Crowd Counting</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>45</volume><issue>7</issue><spage>9248</spage><epage>9255</epage><pages>9248-9255</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Labeling is onerous for crowd counting as it should annotate each individual in crowd images. Recently, several methods have been proposed for semi-supervised crowd counting to reduce the labeling efforts. Given a limited labeling budget, they typically select a few crowd images and densely label all individuals in each of them. Despite the promising results, we argue the None-or-All labeling strategy is suboptimal as the densely labeled individuals in each crowd image usually appear similar while the massive unlabeled crowd images may contain entirely diverse individuals. To this end, we propose to break the labeling chain of previous methods and make the first attempt to reduce spatial labeling redundancy for semi-supervised crowd counting. First, instead of annotating all the regions in each crowd image, we propose to annotate the representative ones only. We analyze the region representativeness from both vertical and horizontal directions of initially estimated density maps, and formulate them as cluster centers of Gaussian Mixture Models. Additionally, to leverage the rich unlabeled regions, we exploit the similarities among individuals in each crowd image to directly supervise the unlabeled regions via feature propagation instead of the error-prone label propagation employed in the previous methods. In this way, we can transfer the original spatial labeling redundancy caused by individual similarities to effective supervision signals on the unlabeled regions. Extensive experiments on the widely-used benchmarks demonstrate that our method can outperform previous best approaches by a large margin.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37015627</pmid><doi>10.1109/TPAMI.2022.3232712</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0003-4730-8435</orcidid><orcidid>https://orcid.org/0000-0003-0136-9603</orcidid><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0000-0001-5953-2771</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-07, Vol.45 (7), p.9248-9255 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2022_3232712 |
source | IEEE Electronic Library (IEL) |
subjects | Crowd counting Feature extraction Head Labeling Labelling Probabilistic models Propagation Redundancy semi-supervised learning Similarity spatial labeling redundancy Technological innovation Termination of employment Training |
title | Reducing Spatial Labeling Redundancy for Active Semi-Supervised Crowd Counting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Spatial%20Labeling%20Redundancy%20for%20Active%20Semi-Supervised%20Crowd%20Counting&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Yongtuo&rft.date=2023-07-01&rft.volume=45&rft.issue=7&rft.spage=9248&rft.epage=9255&rft.pages=9248-9255&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3232712&rft_dat=%3Cproquest_RIE%3E2796161084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823181168&rft_id=info:pmid/37015627&rft_ieee_id=10002302&rfr_iscdi=true |