When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark
To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the face...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-06, Vol.45 (6), p.7917-7932 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7932 |
---|---|
container_issue | 6 |
container_start_page | 7917 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Huang, Zhizhong Zhang, Junping Shan, Hongming |
description | To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components-identity- and age-related features-in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance than state-of-the-art methods for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. The source code and datasets are available at http://hzzone.github.io/MTLFace . |
doi_str_mv | 10.1109/TPAMI.2022.3217882 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2022_3217882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9931965</ieee_id><sourcerecordid>2809879522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-cc8abc711b71d4cfae00103792480c08655fa15d6b645e58163cc0be556316d03</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhi0EgkD5A0VClnrpZYM_1l6bW4qaNlLSVm1Qj5bXO0lMEi_YuyD-fU0TOHAa6Z1nRjN6EPpIyZBSoq_mv0azyZARxoac0UopdoAGVHNdcMH1IRoQKlmRY3WCTlO6I4SWgvBjdMIlJ5LpaoAe_q4g4NESikl4tNHb0OGxdYB_g2uXwXe-DXgG0KVdnEn85zl0K0g-XeMRnvWbzhdzm9Z4CjYGH5Z4HO0Wntq4xjY02OIf8IS_QHCrrY3rD-hoYTcJzvf1DN2Ov85vvhfTn98mN6Np4bgWXeGcsrWrKK0r2pRuYSGfT3ilWamII0oKsbBUNLKWpQChqOTOkRqEkJzKhvAz9Hm39z62Dz2kzmx9crDZ2ABtnwyrOOG0ZERn9NM79K7tY8jXGaaIVpUWjGWK7SgX25QiLMx99PmjZ0OJeRFi_gsxL0LMXkgeutyv7ustNG8jrwYycLEDPAC8tbXmVEvB_wFsR40c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809879522</pqid></control><display><type>article</type><title>When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Huang, Zhizhong ; Zhang, Junping ; Shan, Hongming</creator><creatorcontrib>Huang, Zhizhong ; Zhang, Junping ; Shan, Hongming</creatorcontrib><description>To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components-identity- and age-related features-in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance than state-of-the-art methods for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. The source code and datasets are available at http://hzzone.github.io/MTLFace .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3217882</identifier><identifier>PMID: 36306297</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Age ; Aging ; Algorithms ; Annotations ; Benchmark testing ; Benchmarking ; Benchmarks ; Child ; Datasets ; Face ; face aging ; Face recognition ; Facial Recognition ; Feature decomposition ; Feature extraction ; generative adversarial networks ; Humans ; Image Processing, Computer-Assisted - methods ; Invariants ; Multitasking ; Smoothness ; Source code ; Strategy ; Synthesis ; Task analysis ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-06, Vol.45 (6), p.7917-7932</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-cc8abc711b71d4cfae00103792480c08655fa15d6b645e58163cc0be556316d03</citedby><cites>FETCH-LOGICAL-c395t-cc8abc711b71d4cfae00103792480c08655fa15d6b645e58163cc0be556316d03</cites><orcidid>0000-0002-0604-3197 ; 0000-0002-3581-7331 ; 0000-0002-5924-3360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9931965$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36306297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zhizhong</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><title>When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components-identity- and age-related features-in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance than state-of-the-art methods for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. The source code and datasets are available at http://hzzone.github.io/MTLFace .</description><subject>Age</subject><subject>Aging</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Benchmark testing</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Child</subject><subject>Datasets</subject><subject>Face</subject><subject>face aging</subject><subject>Face recognition</subject><subject>Facial Recognition</subject><subject>Feature decomposition</subject><subject>Feature extraction</subject><subject>generative adversarial networks</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Invariants</subject><subject>Multitasking</subject><subject>Smoothness</subject><subject>Source code</subject><subject>Strategy</subject><subject>Synthesis</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1PGzEQhi0EgkD5A0VClnrpZYM_1l6bW4qaNlLSVm1Qj5bXO0lMEi_YuyD-fU0TOHAa6Z1nRjN6EPpIyZBSoq_mv0azyZARxoac0UopdoAGVHNdcMH1IRoQKlmRY3WCTlO6I4SWgvBjdMIlJ5LpaoAe_q4g4NESikl4tNHb0OGxdYB_g2uXwXe-DXgG0KVdnEn85zl0K0g-XeMRnvWbzhdzm9Z4CjYGH5Z4HO0Wntq4xjY02OIf8IS_QHCrrY3rD-hoYTcJzvf1DN2Ov85vvhfTn98mN6Np4bgWXeGcsrWrKK0r2pRuYSGfT3ilWamII0oKsbBUNLKWpQChqOTOkRqEkJzKhvAz9Hm39z62Dz2kzmx9crDZ2ABtnwyrOOG0ZERn9NM79K7tY8jXGaaIVpUWjGWK7SgX25QiLMx99PmjZ0OJeRFi_gsxL0LMXkgeutyv7ustNG8jrwYycLEDPAC8tbXmVEvB_wFsR40c</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Huang, Zhizhong</creator><creator>Zhang, Junping</creator><creator>Shan, Hongming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid><orcidid>https://orcid.org/0000-0002-3581-7331</orcidid><orcidid>https://orcid.org/0000-0002-5924-3360</orcidid></search><sort><creationdate>20230601</creationdate><title>When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark</title><author>Huang, Zhizhong ; Zhang, Junping ; Shan, Hongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-cc8abc711b71d4cfae00103792480c08655fa15d6b645e58163cc0be556316d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Age</topic><topic>Aging</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Benchmark testing</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Child</topic><topic>Datasets</topic><topic>Face</topic><topic>face aging</topic><topic>Face recognition</topic><topic>Facial Recognition</topic><topic>Feature decomposition</topic><topic>Feature extraction</topic><topic>generative adversarial networks</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Invariants</topic><topic>Multitasking</topic><topic>Smoothness</topic><topic>Source code</topic><topic>Strategy</topic><topic>Synthesis</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhizhong</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhizhong</au><au>Zhang, Junping</au><au>Shan, Hongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>45</volume><issue>6</issue><spage>7917</spage><epage>7932</epage><pages>7917-7932</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components-identity- and age-related features-in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance than state-of-the-art methods for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. The source code and datasets are available at http://hzzone.github.io/MTLFace .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36306297</pmid><doi>10.1109/TPAMI.2022.3217882</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid><orcidid>https://orcid.org/0000-0002-3581-7331</orcidid><orcidid>https://orcid.org/0000-0002-5924-3360</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-06, Vol.45 (6), p.7917-7932 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2022_3217882 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Age Aging Algorithms Annotations Benchmark testing Benchmarking Benchmarks Child Datasets Face face aging Face recognition Facial Recognition Feature decomposition Feature extraction generative adversarial networks Humans Image Processing, Computer-Assisted - methods Invariants Multitasking Smoothness Source code Strategy Synthesis Task analysis Visualization |
title | When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20Age-Invariant%20Face%20Recognition%20Meets%20Face%20Age%20Synthesis:%20A%20Multi-Task%20Learning%20Framework%20and%20a%20New%20Benchmark&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Huang,%20Zhizhong&rft.date=2023-06-01&rft.volume=45&rft.issue=6&rft.spage=7917&rft.epage=7932&rft.pages=7917-7932&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3217882&rft_dat=%3Cproquest_cross%3E2809879522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809879522&rft_id=info:pmid/36306297&rft_ieee_id=9931965&rfr_iscdi=true |