When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark

To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the face...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-06, Vol.45 (6), p.7917-7932
Hauptverfasser: Huang, Zhizhong, Zhang, Junping, Shan, Hongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7932
container_issue 6
container_start_page 7917
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Huang, Zhizhong
Zhang, Junping
Shan, Hongming
description To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components-identity- and age-related features-in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance than state-of-the-art methods for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. The source code and datasets are available at http://hzzone.github.io/MTLFace .
doi_str_mv 10.1109/TPAMI.2022.3217882
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2022_3217882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9931965</ieee_id><sourcerecordid>2809879522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-cc8abc711b71d4cfae00103792480c08655fa15d6b645e58163cc0be556316d03</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhi0EgkD5A0VClnrpZYM_1l6bW4qaNlLSVm1Qj5bXO0lMEi_YuyD-fU0TOHAa6Z1nRjN6EPpIyZBSoq_mv0azyZARxoac0UopdoAGVHNdcMH1IRoQKlmRY3WCTlO6I4SWgvBjdMIlJ5LpaoAe_q4g4NESikl4tNHb0OGxdYB_g2uXwXe-DXgG0KVdnEn85zl0K0g-XeMRnvWbzhdzm9Z4CjYGH5Z4HO0Wntq4xjY02OIf8IS_QHCrrY3rD-hoYTcJzvf1DN2Ov85vvhfTn98mN6Np4bgWXeGcsrWrKK0r2pRuYSGfT3ilWamII0oKsbBUNLKWpQChqOTOkRqEkJzKhvAz9Hm39z62Dz2kzmx9crDZ2ABtnwyrOOG0ZERn9NM79K7tY8jXGaaIVpUWjGWK7SgX25QiLMx99PmjZ0OJeRFi_gsxL0LMXkgeutyv7ustNG8jrwYycLEDPAC8tbXmVEvB_wFsR40c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809879522</pqid></control><display><type>article</type><title>When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Huang, Zhizhong ; Zhang, Junping ; Shan, Hongming</creator><creatorcontrib>Huang, Zhizhong ; Zhang, Junping ; Shan, Hongming</creatorcontrib><description>To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components-identity- and age-related features-in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance than state-of-the-art methods for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. The source code and datasets are available at http://hzzone.github.io/MTLFace .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3217882</identifier><identifier>PMID: 36306297</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Age ; Aging ; Algorithms ; Annotations ; Benchmark testing ; Benchmarking ; Benchmarks ; Child ; Datasets ; Face ; face aging ; Face recognition ; Facial Recognition ; Feature decomposition ; Feature extraction ; generative adversarial networks ; Humans ; Image Processing, Computer-Assisted - methods ; Invariants ; Multitasking ; Smoothness ; Source code ; Strategy ; Synthesis ; Task analysis ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-06, Vol.45 (6), p.7917-7932</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-cc8abc711b71d4cfae00103792480c08655fa15d6b645e58163cc0be556316d03</citedby><cites>FETCH-LOGICAL-c395t-cc8abc711b71d4cfae00103792480c08655fa15d6b645e58163cc0be556316d03</cites><orcidid>0000-0002-0604-3197 ; 0000-0002-3581-7331 ; 0000-0002-5924-3360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9931965$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36306297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zhizhong</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><title>When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components-identity- and age-related features-in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance than state-of-the-art methods for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. The source code and datasets are available at http://hzzone.github.io/MTLFace .</description><subject>Age</subject><subject>Aging</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Benchmark testing</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Child</subject><subject>Datasets</subject><subject>Face</subject><subject>face aging</subject><subject>Face recognition</subject><subject>Facial Recognition</subject><subject>Feature decomposition</subject><subject>Feature extraction</subject><subject>generative adversarial networks</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Invariants</subject><subject>Multitasking</subject><subject>Smoothness</subject><subject>Source code</subject><subject>Strategy</subject><subject>Synthesis</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1PGzEQhi0EgkD5A0VClnrpZYM_1l6bW4qaNlLSVm1Qj5bXO0lMEi_YuyD-fU0TOHAa6Z1nRjN6EPpIyZBSoq_mv0azyZARxoac0UopdoAGVHNdcMH1IRoQKlmRY3WCTlO6I4SWgvBjdMIlJ5LpaoAe_q4g4NESikl4tNHb0OGxdYB_g2uXwXe-DXgG0KVdnEn85zl0K0g-XeMRnvWbzhdzm9Z4CjYGH5Z4HO0Wntq4xjY02OIf8IS_QHCrrY3rD-hoYTcJzvf1DN2Ov85vvhfTn98mN6Np4bgWXeGcsrWrKK0r2pRuYSGfT3ilWamII0oKsbBUNLKWpQChqOTOkRqEkJzKhvAz9Hm39z62Dz2kzmx9crDZ2ABtnwyrOOG0ZERn9NM79K7tY8jXGaaIVpUWjGWK7SgX25QiLMx99PmjZ0OJeRFi_gsxL0LMXkgeutyv7ustNG8jrwYycLEDPAC8tbXmVEvB_wFsR40c</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Huang, Zhizhong</creator><creator>Zhang, Junping</creator><creator>Shan, Hongming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid><orcidid>https://orcid.org/0000-0002-3581-7331</orcidid><orcidid>https://orcid.org/0000-0002-5924-3360</orcidid></search><sort><creationdate>20230601</creationdate><title>When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark</title><author>Huang, Zhizhong ; Zhang, Junping ; Shan, Hongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-cc8abc711b71d4cfae00103792480c08655fa15d6b645e58163cc0be556316d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Age</topic><topic>Aging</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Benchmark testing</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Child</topic><topic>Datasets</topic><topic>Face</topic><topic>face aging</topic><topic>Face recognition</topic><topic>Facial Recognition</topic><topic>Feature decomposition</topic><topic>Feature extraction</topic><topic>generative adversarial networks</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Invariants</topic><topic>Multitasking</topic><topic>Smoothness</topic><topic>Source code</topic><topic>Strategy</topic><topic>Synthesis</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhizhong</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhizhong</au><au>Zhang, Junping</au><au>Shan, Hongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>45</volume><issue>6</issue><spage>7917</spage><epage>7932</epage><pages>7917-7932</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components-identity- and age-related features-in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance than state-of-the-art methods for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. The source code and datasets are available at http://hzzone.github.io/MTLFace .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36306297</pmid><doi>10.1109/TPAMI.2022.3217882</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid><orcidid>https://orcid.org/0000-0002-3581-7331</orcidid><orcidid>https://orcid.org/0000-0002-5924-3360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-06, Vol.45 (6), p.7917-7932
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2022_3217882
source MEDLINE; IEEE Electronic Library (IEL)
subjects Age
Aging
Algorithms
Annotations
Benchmark testing
Benchmarking
Benchmarks
Child
Datasets
Face
face aging
Face recognition
Facial Recognition
Feature decomposition
Feature extraction
generative adversarial networks
Humans
Image Processing, Computer-Assisted - methods
Invariants
Multitasking
Smoothness
Source code
Strategy
Synthesis
Task analysis
Visualization
title When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and a New Benchmark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20Age-Invariant%20Face%20Recognition%20Meets%20Face%20Age%20Synthesis:%20A%20Multi-Task%20Learning%20Framework%20and%20a%20New%20Benchmark&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Huang,%20Zhizhong&rft.date=2023-06-01&rft.volume=45&rft.issue=6&rft.spage=7917&rft.epage=7932&rft.pages=7917-7932&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3217882&rft_dat=%3Cproquest_cross%3E2809879522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809879522&rft_id=info:pmid/36306297&rft_ieee_id=9931965&rfr_iscdi=true