Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network
Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-04, Vol.45 (4), p.4180-4197 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4197 |
---|---|
container_issue | 4 |
container_start_page | 4180 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Peng, Jiayong Xiong, Zhiwei Tan, Hao Huang, Xin Li, Zheng-Ping Xu, Feihu |
description | Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In this paper, we propose a unified deep neural network that, for the first time, explicitly addresses these two challenges, and simultaneously recovers depth maps and intensity images from photon-efficient measurements. Starting from a general image formation model, our network is constituted of one encoder, where a non-local block is utilized to exploit the long-range correlations in both spatial and temporal dimensions of the raw measurement, and two decoders, which are designed to recover depth and intensity, respectively. Meanwhile, we investigate the statistics of the background noise photons and propose a noise prior block to further improve the reconstruction performance. The proposed network achieves decent reconstruction fidelity even under extremely low photon counts / SBR and heavy blur caused by the multiple-return effect, which significantly surpasses the existing methods. Moreover, our network trained on simulated data generalizes well to real-world imaging systems, which greatly extends the application scope of photon-efficient imaging in challenging scenarios with a strict limit on optical flux. Code is available at https://github.com/JiayongO-O/PENonLocal . |
doi_str_mv | 10.1109/TPAMI.2022.3200745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2022_3200745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9864284</ieee_id><sourcerecordid>2705749539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-4d862239c64971e69351a40bf6007326e6357970335d9ba5c8615519e9e64f03</originalsourceid><addsrcrecordid>eNpdkEtPwkAQgDdGI4j-AU1MEy9eivtu94iISoKKBuOxKWUKq6WLu9sY_72LIAdPk8x88_oQOiW4SwhWV5Nx72HYpZjSLqMYJ1zsoTZRTMVMMLWP2phIGqcpTVvoyLl3jAkXmB2iFhNKccFlGz1fG-O8rufReGG8qeNBWepCQ-2j4TKfQ_QChamdt03htamjN-0XUS96rXWpYRbdAKyiR2hsXoXgv4z9OEYHZV45ONnGDprcDib9-3j0dDfs90ZxwQTxMZ-lklKmCslVQkCqkM05npYyfMKoBMlEohLMmJipaS6KVBIhiAIFkpeYddDlZuzKms8GnM-W2hVQVXkNpnEZTbBIuAoiAnrxD303ja3DcYFKuRA0LA8U3VCFNc5ZKLOV1cvcfmcEZ2vf2a_vbO072_oOTefb0c10CbNdy5_gAJxtAA0Au7JKJacpZz-yXoFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784552935</pqid></control><display><type>article</type><title>Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Jiayong ; Xiong, Zhiwei ; Tan, Hao ; Huang, Xin ; Li, Zheng-Ping ; Xu, Feihu</creator><creatorcontrib>Peng, Jiayong ; Xiong, Zhiwei ; Tan, Hao ; Huang, Xin ; Li, Zheng-Ping ; Xu, Feihu</creatorcontrib><description>Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In this paper, we propose a unified deep neural network that, for the first time, explicitly addresses these two challenges, and simultaneously recovers depth maps and intensity images from photon-efficient measurements. Starting from a general image formation model, our network is constituted of one encoder, where a non-local block is utilized to exploit the long-range correlations in both spatial and temporal dimensions of the raw measurement, and two decoders, which are designed to recover depth and intensity, respectively. Meanwhile, we investigate the statistics of the background noise photons and propose a noise prior block to further improve the reconstruction performance. The proposed network achieves decent reconstruction fidelity even under extremely low photon counts / SBR and heavy blur caused by the multiple-return effect, which significantly surpasses the existing methods. Moreover, our network trained on simulated data generalizes well to real-world imaging systems, which greatly extends the application scope of photon-efficient imaging in challenging scenarios with a strict limit on optical flux. Code is available at https://github.com/JiayongO-O/PENonLocal .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3200745</identifier><identifier>PMID: 35994546</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Background noise ; Coders ; Computational photography ; Correlation ; Decoders ; deep learning ; Detectors ; Image reconstruction ; Imaging ; Neural networks ; Photonics ; Photons ; Single-photon avalanche diodes ; single-photon imaging ; Three-dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-04, Vol.45 (4), p.4180-4197</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-4d862239c64971e69351a40bf6007326e6357970335d9ba5c8615519e9e64f03</citedby><cites>FETCH-LOGICAL-c351t-4d862239c64971e69351a40bf6007326e6357970335d9ba5c8615519e9e64f03</cites><orcidid>0000-0002-1643-225X ; 0000-0002-9787-7460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9864284$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9864284$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35994546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jiayong</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Li, Zheng-Ping</creatorcontrib><creatorcontrib>Xu, Feihu</creatorcontrib><title>Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In this paper, we propose a unified deep neural network that, for the first time, explicitly addresses these two challenges, and simultaneously recovers depth maps and intensity images from photon-efficient measurements. Starting from a general image formation model, our network is constituted of one encoder, where a non-local block is utilized to exploit the long-range correlations in both spatial and temporal dimensions of the raw measurement, and two decoders, which are designed to recover depth and intensity, respectively. Meanwhile, we investigate the statistics of the background noise photons and propose a noise prior block to further improve the reconstruction performance. The proposed network achieves decent reconstruction fidelity even under extremely low photon counts / SBR and heavy blur caused by the multiple-return effect, which significantly surpasses the existing methods. Moreover, our network trained on simulated data generalizes well to real-world imaging systems, which greatly extends the application scope of photon-efficient imaging in challenging scenarios with a strict limit on optical flux. Code is available at https://github.com/JiayongO-O/PENonLocal .</description><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Coders</subject><subject>Computational photography</subject><subject>Correlation</subject><subject>Decoders</subject><subject>deep learning</subject><subject>Detectors</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Neural networks</subject><subject>Photonics</subject><subject>Photons</subject><subject>Single-photon avalanche diodes</subject><subject>single-photon imaging</subject><subject>Three-dimensional displays</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtPwkAQgDdGI4j-AU1MEy9eivtu94iISoKKBuOxKWUKq6WLu9sY_72LIAdPk8x88_oQOiW4SwhWV5Nx72HYpZjSLqMYJ1zsoTZRTMVMMLWP2phIGqcpTVvoyLl3jAkXmB2iFhNKccFlGz1fG-O8rufReGG8qeNBWepCQ-2j4TKfQ_QChamdt03htamjN-0XUS96rXWpYRbdAKyiR2hsXoXgv4z9OEYHZV45ONnGDprcDib9-3j0dDfs90ZxwQTxMZ-lklKmCslVQkCqkM05npYyfMKoBMlEohLMmJipaS6KVBIhiAIFkpeYddDlZuzKms8GnM-W2hVQVXkNpnEZTbBIuAoiAnrxD303ja3DcYFKuRA0LA8U3VCFNc5ZKLOV1cvcfmcEZ2vf2a_vbO072_oOTefb0c10CbNdy5_gAJxtAA0Au7JKJacpZz-yXoFU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Peng, Jiayong</creator><creator>Xiong, Zhiwei</creator><creator>Tan, Hao</creator><creator>Huang, Xin</creator><creator>Li, Zheng-Ping</creator><creator>Xu, Feihu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1643-225X</orcidid><orcidid>https://orcid.org/0000-0002-9787-7460</orcidid></search><sort><creationdate>20230401</creationdate><title>Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network</title><author>Peng, Jiayong ; Xiong, Zhiwei ; Tan, Hao ; Huang, Xin ; Li, Zheng-Ping ; Xu, Feihu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-4d862239c64971e69351a40bf6007326e6357970335d9ba5c8615519e9e64f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Coders</topic><topic>Computational photography</topic><topic>Correlation</topic><topic>Decoders</topic><topic>deep learning</topic><topic>Detectors</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Neural networks</topic><topic>Photonics</topic><topic>Photons</topic><topic>Single-photon avalanche diodes</topic><topic>single-photon imaging</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jiayong</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Li, Zheng-Ping</creatorcontrib><creatorcontrib>Xu, Feihu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Jiayong</au><au>Xiong, Zhiwei</au><au>Tan, Hao</au><au>Huang, Xin</au><au>Li, Zheng-Ping</au><au>Xu, Feihu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>45</volume><issue>4</issue><spage>4180</spage><epage>4197</epage><pages>4180-4197</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In this paper, we propose a unified deep neural network that, for the first time, explicitly addresses these two challenges, and simultaneously recovers depth maps and intensity images from photon-efficient measurements. Starting from a general image formation model, our network is constituted of one encoder, where a non-local block is utilized to exploit the long-range correlations in both spatial and temporal dimensions of the raw measurement, and two decoders, which are designed to recover depth and intensity, respectively. Meanwhile, we investigate the statistics of the background noise photons and propose a noise prior block to further improve the reconstruction performance. The proposed network achieves decent reconstruction fidelity even under extremely low photon counts / SBR and heavy blur caused by the multiple-return effect, which significantly surpasses the existing methods. Moreover, our network trained on simulated data generalizes well to real-world imaging systems, which greatly extends the application scope of photon-efficient imaging in challenging scenarios with a strict limit on optical flux. Code is available at https://github.com/JiayongO-O/PENonLocal .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35994546</pmid><doi>10.1109/TPAMI.2022.3200745</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1643-225X</orcidid><orcidid>https://orcid.org/0000-0002-9787-7460</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-04, Vol.45 (4), p.4180-4197 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2022_3200745 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Background noise Coders Computational photography Correlation Decoders deep learning Detectors Image reconstruction Imaging Neural networks Photonics Photons Single-photon avalanche diodes single-photon imaging Three-dimensional displays |
title | Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Photon-Efficient%20Image%20Reconstruction%20With%20A%20Unified%20Deep%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Peng,%20Jiayong&rft.date=2023-04-01&rft.volume=45&rft.issue=4&rft.spage=4180&rft.epage=4197&rft.pages=4180-4197&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3200745&rft_dat=%3Cproquest_RIE%3E2705749539%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784552935&rft_id=info:pmid/35994546&rft_ieee_id=9864284&rfr_iscdi=true |