Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network

Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-04, Vol.45 (4), p.4180-4197
Hauptverfasser: Peng, Jiayong, Xiong, Zhiwei, Tan, Hao, Huang, Xin, Li, Zheng-Ping, Xu, Feihu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4197
container_issue 4
container_start_page 4180
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Peng, Jiayong
Xiong, Zhiwei
Tan, Hao
Huang, Xin
Li, Zheng-Ping
Xu, Feihu
description Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In this paper, we propose a unified deep neural network that, for the first time, explicitly addresses these two challenges, and simultaneously recovers depth maps and intensity images from photon-efficient measurements. Starting from a general image formation model, our network is constituted of one encoder, where a non-local block is utilized to exploit the long-range correlations in both spatial and temporal dimensions of the raw measurement, and two decoders, which are designed to recover depth and intensity, respectively. Meanwhile, we investigate the statistics of the background noise photons and propose a noise prior block to further improve the reconstruction performance. The proposed network achieves decent reconstruction fidelity even under extremely low photon counts / SBR and heavy blur caused by the multiple-return effect, which significantly surpasses the existing methods. Moreover, our network trained on simulated data generalizes well to real-world imaging systems, which greatly extends the application scope of photon-efficient imaging in challenging scenarios with a strict limit on optical flux. Code is available at https://github.com/JiayongO-O/PENonLocal .
doi_str_mv 10.1109/TPAMI.2022.3200745
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2022_3200745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9864284</ieee_id><sourcerecordid>2705749539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-4d862239c64971e69351a40bf6007326e6357970335d9ba5c8615519e9e64f03</originalsourceid><addsrcrecordid>eNpdkEtPwkAQgDdGI4j-AU1MEy9eivtu94iISoKKBuOxKWUKq6WLu9sY_72LIAdPk8x88_oQOiW4SwhWV5Nx72HYpZjSLqMYJ1zsoTZRTMVMMLWP2phIGqcpTVvoyLl3jAkXmB2iFhNKccFlGz1fG-O8rufReGG8qeNBWepCQ-2j4TKfQ_QChamdt03htamjN-0XUS96rXWpYRbdAKyiR2hsXoXgv4z9OEYHZV45ONnGDprcDib9-3j0dDfs90ZxwQTxMZ-lklKmCslVQkCqkM05npYyfMKoBMlEohLMmJipaS6KVBIhiAIFkpeYddDlZuzKms8GnM-W2hVQVXkNpnEZTbBIuAoiAnrxD303ja3DcYFKuRA0LA8U3VCFNc5ZKLOV1cvcfmcEZ2vf2a_vbO072_oOTefb0c10CbNdy5_gAJxtAA0Au7JKJacpZz-yXoFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784552935</pqid></control><display><type>article</type><title>Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Jiayong ; Xiong, Zhiwei ; Tan, Hao ; Huang, Xin ; Li, Zheng-Ping ; Xu, Feihu</creator><creatorcontrib>Peng, Jiayong ; Xiong, Zhiwei ; Tan, Hao ; Huang, Xin ; Li, Zheng-Ping ; Xu, Feihu</creatorcontrib><description>Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In this paper, we propose a unified deep neural network that, for the first time, explicitly addresses these two challenges, and simultaneously recovers depth maps and intensity images from photon-efficient measurements. Starting from a general image formation model, our network is constituted of one encoder, where a non-local block is utilized to exploit the long-range correlations in both spatial and temporal dimensions of the raw measurement, and two decoders, which are designed to recover depth and intensity, respectively. Meanwhile, we investigate the statistics of the background noise photons and propose a noise prior block to further improve the reconstruction performance. The proposed network achieves decent reconstruction fidelity even under extremely low photon counts / SBR and heavy blur caused by the multiple-return effect, which significantly surpasses the existing methods. Moreover, our network trained on simulated data generalizes well to real-world imaging systems, which greatly extends the application scope of photon-efficient imaging in challenging scenarios with a strict limit on optical flux. Code is available at https://github.com/JiayongO-O/PENonLocal .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3200745</identifier><identifier>PMID: 35994546</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Background noise ; Coders ; Computational photography ; Correlation ; Decoders ; deep learning ; Detectors ; Image reconstruction ; Imaging ; Neural networks ; Photonics ; Photons ; Single-photon avalanche diodes ; single-photon imaging ; Three-dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-04, Vol.45 (4), p.4180-4197</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-4d862239c64971e69351a40bf6007326e6357970335d9ba5c8615519e9e64f03</citedby><cites>FETCH-LOGICAL-c351t-4d862239c64971e69351a40bf6007326e6357970335d9ba5c8615519e9e64f03</cites><orcidid>0000-0002-1643-225X ; 0000-0002-9787-7460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9864284$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9864284$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35994546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jiayong</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Li, Zheng-Ping</creatorcontrib><creatorcontrib>Xu, Feihu</creatorcontrib><title>Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In this paper, we propose a unified deep neural network that, for the first time, explicitly addresses these two challenges, and simultaneously recovers depth maps and intensity images from photon-efficient measurements. Starting from a general image formation model, our network is constituted of one encoder, where a non-local block is utilized to exploit the long-range correlations in both spatial and temporal dimensions of the raw measurement, and two decoders, which are designed to recover depth and intensity, respectively. Meanwhile, we investigate the statistics of the background noise photons and propose a noise prior block to further improve the reconstruction performance. The proposed network achieves decent reconstruction fidelity even under extremely low photon counts / SBR and heavy blur caused by the multiple-return effect, which significantly surpasses the existing methods. Moreover, our network trained on simulated data generalizes well to real-world imaging systems, which greatly extends the application scope of photon-efficient imaging in challenging scenarios with a strict limit on optical flux. Code is available at https://github.com/JiayongO-O/PENonLocal .</description><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Coders</subject><subject>Computational photography</subject><subject>Correlation</subject><subject>Decoders</subject><subject>deep learning</subject><subject>Detectors</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Neural networks</subject><subject>Photonics</subject><subject>Photons</subject><subject>Single-photon avalanche diodes</subject><subject>single-photon imaging</subject><subject>Three-dimensional displays</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtPwkAQgDdGI4j-AU1MEy9eivtu94iISoKKBuOxKWUKq6WLu9sY_72LIAdPk8x88_oQOiW4SwhWV5Nx72HYpZjSLqMYJ1zsoTZRTMVMMLWP2phIGqcpTVvoyLl3jAkXmB2iFhNKccFlGz1fG-O8rufReGG8qeNBWepCQ-2j4TKfQ_QChamdt03htamjN-0XUS96rXWpYRbdAKyiR2hsXoXgv4z9OEYHZV45ONnGDprcDib9-3j0dDfs90ZxwQTxMZ-lklKmCslVQkCqkM05npYyfMKoBMlEohLMmJipaS6KVBIhiAIFkpeYddDlZuzKms8GnM-W2hVQVXkNpnEZTbBIuAoiAnrxD303ja3DcYFKuRA0LA8U3VCFNc5ZKLOV1cvcfmcEZ2vf2a_vbO072_oOTefb0c10CbNdy5_gAJxtAA0Au7JKJacpZz-yXoFU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Peng, Jiayong</creator><creator>Xiong, Zhiwei</creator><creator>Tan, Hao</creator><creator>Huang, Xin</creator><creator>Li, Zheng-Ping</creator><creator>Xu, Feihu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1643-225X</orcidid><orcidid>https://orcid.org/0000-0002-9787-7460</orcidid></search><sort><creationdate>20230401</creationdate><title>Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network</title><author>Peng, Jiayong ; Xiong, Zhiwei ; Tan, Hao ; Huang, Xin ; Li, Zheng-Ping ; Xu, Feihu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-4d862239c64971e69351a40bf6007326e6357970335d9ba5c8615519e9e64f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Coders</topic><topic>Computational photography</topic><topic>Correlation</topic><topic>Decoders</topic><topic>deep learning</topic><topic>Detectors</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Neural networks</topic><topic>Photonics</topic><topic>Photons</topic><topic>Single-photon avalanche diodes</topic><topic>single-photon imaging</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jiayong</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Li, Zheng-Ping</creatorcontrib><creatorcontrib>Xu, Feihu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Jiayong</au><au>Xiong, Zhiwei</au><au>Tan, Hao</au><au>Huang, Xin</au><au>Li, Zheng-Ping</au><au>Xu, Feihu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>45</volume><issue>4</issue><spage>4180</spage><epage>4197</epage><pages>4180-4197</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Photon-efficient imaging, which captures 3D images with single-photon sensors, has enabled a wide range of applications. However, two major challenges limit the reconstruction performance, i.e., the low photon counts accompanied by low signal-to-background ratio (SBR) and the multiple returns. In this paper, we propose a unified deep neural network that, for the first time, explicitly addresses these two challenges, and simultaneously recovers depth maps and intensity images from photon-efficient measurements. Starting from a general image formation model, our network is constituted of one encoder, where a non-local block is utilized to exploit the long-range correlations in both spatial and temporal dimensions of the raw measurement, and two decoders, which are designed to recover depth and intensity, respectively. Meanwhile, we investigate the statistics of the background noise photons and propose a noise prior block to further improve the reconstruction performance. The proposed network achieves decent reconstruction fidelity even under extremely low photon counts / SBR and heavy blur caused by the multiple-return effect, which significantly surpasses the existing methods. Moreover, our network trained on simulated data generalizes well to real-world imaging systems, which greatly extends the application scope of photon-efficient imaging in challenging scenarios with a strict limit on optical flux. Code is available at https://github.com/JiayongO-O/PENonLocal .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35994546</pmid><doi>10.1109/TPAMI.2022.3200745</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1643-225X</orcidid><orcidid>https://orcid.org/0000-0002-9787-7460</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-04, Vol.45 (4), p.4180-4197
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2022_3200745
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Background noise
Coders
Computational photography
Correlation
Decoders
deep learning
Detectors
Image reconstruction
Imaging
Neural networks
Photonics
Photons
Single-photon avalanche diodes
single-photon imaging
Three-dimensional displays
title Boosting Photon-Efficient Image Reconstruction With A Unified Deep Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Photon-Efficient%20Image%20Reconstruction%20With%20A%20Unified%20Deep%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Peng,%20Jiayong&rft.date=2023-04-01&rft.volume=45&rft.issue=4&rft.spage=4180&rft.epage=4197&rft.pages=4180-4197&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3200745&rft_dat=%3Cproquest_RIE%3E2705749539%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784552935&rft_id=info:pmid/35994546&rft_ieee_id=9864284&rfr_iscdi=true