Domain Stylization: A Fast Covariance Matching Framework Towards Domain Adaptation

Generating computer graphics (CG) rendered synthetic images has been widely used to create simulation environments for robotics/autonomous driving and generate labeled data. Yet, the problem of training models purely with synthetic data remains challenging due to the considerable domain gaps caused...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2021-07, Vol.43 (7), p.2360-2372
Hauptverfasser: Dundar, Aysegul, Liu, Ming-Yu, Yu, Zhiding, Wang, Ting-Chun, Zedlewski, John, Kautz, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2372
container_issue 7
container_start_page 2360
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 43
creator Dundar, Aysegul
Liu, Ming-Yu
Yu, Zhiding
Wang, Ting-Chun
Zedlewski, John
Kautz, Jan
description Generating computer graphics (CG) rendered synthetic images has been widely used to create simulation environments for robotics/autonomous driving and generate labeled data. Yet, the problem of training models purely with synthetic data remains challenging due to the considerable domain gaps caused by current limitations on rendering. In this paper, we propose a simple yet effective domain adaptation framework towards closing such gap at image level. Unlike many GAN-based approaches, our method aims to match the covariance of the universal feature embeddings across domains, making the adaptation a fast, convenient step and avoiding the need for potentially difficult GAN training. To align domains more precisely, we further propose a conditional covariance matching framework which iteratively estimates semantic segmentation regions and conditionally matches the class-wise feature covariance given the segmentation regions. We demonstrate that both tasks can mutually refine and considerably improve each other, leading to state-of-the-art domain adaptation results. Extensive experiments under multiple synthetic-to-real settings show that our approach exceeds the performance of latest domain adaptation approaches. In addition, we offer a quantitative analysis where our framework shows considerable reduction in Frechet Inception distance between source and target domains, demonstrating the effectiveness of this work in bridging the synthetic-to-real domain gap.
doi_str_mv 10.1109/TPAMI.2020.2969421
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2020_2969421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8968319</ieee_id><sourcerecordid>2348801077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-397b7f4cdab3c7162eca412e4d5304958c8c983603a564de19b852d27922e1bb3</originalsourceid><addsrcrecordid>eNpdkM9PwjAYhhujEUT_AU3MEi9ehv21rfW2oCgJRKN4brquaJGt2G4S_OsdMDl4-g7f87558wBwjmAfIchvps_pZNTHEMM-5jGnGB2ALuKEhyQi_BB0IYpxyBhmHXDi_RxCRCNIjkGHIM4jmsRd8HJnC2nK4LVaL8yPrIwtb4M0GEpfBQP7LZ2RpdLBRFbqw5TvwdDJQq-s-wymdiVd7oO2IM3lstrmT8HRTC68PmtvD7wN76eDx3D89DAapONQUZRUIeFJlsyoymVGVNIs1UpShDXNIwIpj5hiijMSQyKjmOYa8YxFOMcJx1ijLCM9cL3rXTr7VWtficJ4pRcLWWpbe4EJZQwimCQNevUPndvalc06gRtVJEIxYg2Fd5Ry1nunZ2LpTCHdWiAoNsbF1rjYGBet8SZ02VbXWaHzfeRPcQNc7ACjtd6_GY9Zg5BfJ7mDbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539351618</pqid></control><display><type>article</type><title>Domain Stylization: A Fast Covariance Matching Framework Towards Domain Adaptation</title><source>IEEE Electronic Library (IEL)</source><creator>Dundar, Aysegul ; Liu, Ming-Yu ; Yu, Zhiding ; Wang, Ting-Chun ; Zedlewski, John ; Kautz, Jan</creator><creatorcontrib>Dundar, Aysegul ; Liu, Ming-Yu ; Yu, Zhiding ; Wang, Ting-Chun ; Zedlewski, John ; Kautz, Jan</creatorcontrib><description>Generating computer graphics (CG) rendered synthetic images has been widely used to create simulation environments for robotics/autonomous driving and generate labeled data. Yet, the problem of training models purely with synthetic data remains challenging due to the considerable domain gaps caused by current limitations on rendering. In this paper, we propose a simple yet effective domain adaptation framework towards closing such gap at image level. Unlike many GAN-based approaches, our method aims to match the covariance of the universal feature embeddings across domains, making the adaptation a fast, convenient step and avoiding the need for potentially difficult GAN training. To align domains more precisely, we further propose a conditional covariance matching framework which iteratively estimates semantic segmentation regions and conditionally matches the class-wise feature covariance given the segmentation regions. We demonstrate that both tasks can mutually refine and considerably improve each other, leading to state-of-the-art domain adaptation results. Extensive experiments under multiple synthetic-to-real settings show that our approach exceeds the performance of latest domain adaptation approaches. In addition, we offer a quantitative analysis where our framework shows considerable reduction in Frechet Inception distance between source and target domains, demonstrating the effectiveness of this work in bridging the synthetic-to-real domain gap.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.2969421</identifier><identifier>PMID: 31995476</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Adaptation models ; Computer graphics ; Covariance ; Data models ; Domain adaptation ; Domains ; Gallium nitride ; Image segmentation ; image stylization ; Matching ; object detection ; Robotics ; semantic segmentation ; Semantics ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2021-07, Vol.43 (7), p.2360-2372</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-397b7f4cdab3c7162eca412e4d5304958c8c983603a564de19b852d27922e1bb3</citedby><cites>FETCH-LOGICAL-c417t-397b7f4cdab3c7162eca412e4d5304958c8c983603a564de19b852d27922e1bb3</cites><orcidid>0000-0002-8830-429X ; 0000-0003-2014-6325 ; 0000-0002-2951-2398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8968319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8968319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31995476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dundar, Aysegul</creatorcontrib><creatorcontrib>Liu, Ming-Yu</creatorcontrib><creatorcontrib>Yu, Zhiding</creatorcontrib><creatorcontrib>Wang, Ting-Chun</creatorcontrib><creatorcontrib>Zedlewski, John</creatorcontrib><creatorcontrib>Kautz, Jan</creatorcontrib><title>Domain Stylization: A Fast Covariance Matching Framework Towards Domain Adaptation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Generating computer graphics (CG) rendered synthetic images has been widely used to create simulation environments for robotics/autonomous driving and generate labeled data. Yet, the problem of training models purely with synthetic data remains challenging due to the considerable domain gaps caused by current limitations on rendering. In this paper, we propose a simple yet effective domain adaptation framework towards closing such gap at image level. Unlike many GAN-based approaches, our method aims to match the covariance of the universal feature embeddings across domains, making the adaptation a fast, convenient step and avoiding the need for potentially difficult GAN training. To align domains more precisely, we further propose a conditional covariance matching framework which iteratively estimates semantic segmentation regions and conditionally matches the class-wise feature covariance given the segmentation regions. We demonstrate that both tasks can mutually refine and considerably improve each other, leading to state-of-the-art domain adaptation results. Extensive experiments under multiple synthetic-to-real settings show that our approach exceeds the performance of latest domain adaptation approaches. In addition, we offer a quantitative analysis where our framework shows considerable reduction in Frechet Inception distance between source and target domains, demonstrating the effectiveness of this work in bridging the synthetic-to-real domain gap.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Computer graphics</subject><subject>Covariance</subject><subject>Data models</subject><subject>Domain adaptation</subject><subject>Domains</subject><subject>Gallium nitride</subject><subject>Image segmentation</subject><subject>image stylization</subject><subject>Matching</subject><subject>object detection</subject><subject>Robotics</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9PwjAYhhujEUT_AU3MEi9ehv21rfW2oCgJRKN4brquaJGt2G4S_OsdMDl4-g7f87558wBwjmAfIchvps_pZNTHEMM-5jGnGB2ALuKEhyQi_BB0IYpxyBhmHXDi_RxCRCNIjkGHIM4jmsRd8HJnC2nK4LVaL8yPrIwtb4M0GEpfBQP7LZ2RpdLBRFbqw5TvwdDJQq-s-wymdiVd7oO2IM3lstrmT8HRTC68PmtvD7wN76eDx3D89DAapONQUZRUIeFJlsyoymVGVNIs1UpShDXNIwIpj5hiijMSQyKjmOYa8YxFOMcJx1ijLCM9cL3rXTr7VWtficJ4pRcLWWpbe4EJZQwimCQNevUPndvalc06gRtVJEIxYg2Fd5Ry1nunZ2LpTCHdWiAoNsbF1rjYGBet8SZ02VbXWaHzfeRPcQNc7ACjtd6_GY9Zg5BfJ7mDbw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Dundar, Aysegul</creator><creator>Liu, Ming-Yu</creator><creator>Yu, Zhiding</creator><creator>Wang, Ting-Chun</creator><creator>Zedlewski, John</creator><creator>Kautz, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8830-429X</orcidid><orcidid>https://orcid.org/0000-0003-2014-6325</orcidid><orcidid>https://orcid.org/0000-0002-2951-2398</orcidid></search><sort><creationdate>20210701</creationdate><title>Domain Stylization: A Fast Covariance Matching Framework Towards Domain Adaptation</title><author>Dundar, Aysegul ; Liu, Ming-Yu ; Yu, Zhiding ; Wang, Ting-Chun ; Zedlewski, John ; Kautz, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-397b7f4cdab3c7162eca412e4d5304958c8c983603a564de19b852d27922e1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Computer graphics</topic><topic>Covariance</topic><topic>Data models</topic><topic>Domain adaptation</topic><topic>Domains</topic><topic>Gallium nitride</topic><topic>Image segmentation</topic><topic>image stylization</topic><topic>Matching</topic><topic>object detection</topic><topic>Robotics</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dundar, Aysegul</creatorcontrib><creatorcontrib>Liu, Ming-Yu</creatorcontrib><creatorcontrib>Yu, Zhiding</creatorcontrib><creatorcontrib>Wang, Ting-Chun</creatorcontrib><creatorcontrib>Zedlewski, John</creatorcontrib><creatorcontrib>Kautz, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dundar, Aysegul</au><au>Liu, Ming-Yu</au><au>Yu, Zhiding</au><au>Wang, Ting-Chun</au><au>Zedlewski, John</au><au>Kautz, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Stylization: A Fast Covariance Matching Framework Towards Domain Adaptation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>43</volume><issue>7</issue><spage>2360</spage><epage>2372</epage><pages>2360-2372</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Generating computer graphics (CG) rendered synthetic images has been widely used to create simulation environments for robotics/autonomous driving and generate labeled data. Yet, the problem of training models purely with synthetic data remains challenging due to the considerable domain gaps caused by current limitations on rendering. In this paper, we propose a simple yet effective domain adaptation framework towards closing such gap at image level. Unlike many GAN-based approaches, our method aims to match the covariance of the universal feature embeddings across domains, making the adaptation a fast, convenient step and avoiding the need for potentially difficult GAN training. To align domains more precisely, we further propose a conditional covariance matching framework which iteratively estimates semantic segmentation regions and conditionally matches the class-wise feature covariance given the segmentation regions. We demonstrate that both tasks can mutually refine and considerably improve each other, leading to state-of-the-art domain adaptation results. Extensive experiments under multiple synthetic-to-real settings show that our approach exceeds the performance of latest domain adaptation approaches. In addition, we offer a quantitative analysis where our framework shows considerable reduction in Frechet Inception distance between source and target domains, demonstrating the effectiveness of this work in bridging the synthetic-to-real domain gap.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31995476</pmid><doi>10.1109/TPAMI.2020.2969421</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8830-429X</orcidid><orcidid>https://orcid.org/0000-0003-2014-6325</orcidid><orcidid>https://orcid.org/0000-0002-2951-2398</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2021-07, Vol.43 (7), p.2360-2372
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2020_2969421
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation models
Computer graphics
Covariance
Data models
Domain adaptation
Domains
Gallium nitride
Image segmentation
image stylization
Matching
object detection
Robotics
semantic segmentation
Semantics
Task analysis
Training
title Domain Stylization: A Fast Covariance Matching Framework Towards Domain Adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Stylization:%20A%20Fast%20Covariance%20Matching%20Framework%20Towards%20Domain%20Adaptation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Dundar,%20Aysegul&rft.date=2021-07-01&rft.volume=43&rft.issue=7&rft.spage=2360&rft.epage=2372&rft.pages=2360-2372&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.2969421&rft_dat=%3Cproquest_RIE%3E2348801077%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539351618&rft_id=info:pmid/31995476&rft_ieee_id=8968319&rfr_iscdi=true