Face Alignment in Full Pose Range: A 3D Total Solution
Face alignment, which fits a face model to an image and extracts the semantic meanings of facial pixels, has been an important topic in the computer vision community. However, most algorithms are designed for faces in small to medium poses (yaw angle is smaller than 45 degree), which lack the abilit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2019-01, Vol.41 (1), p.78-92 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | 1 |
container_start_page | 78 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 41 |
creator | Zhu, Xiangyu Liu, Xiaoming Lei, Zhen Li, Stan Z. |
description | Face alignment, which fits a face model to an image and extracts the semantic meanings of facial pixels, has been an important topic in the computer vision community. However, most algorithms are designed for faces in small to medium poses (yaw angle is smaller than 45 degree), which lack the ability to align faces in large poses up to 90 degree. The challenges are three-fold. First, the commonly used landmark face model assumes that all the landmarks are visible and is therefore not suitable for large poses. Second, the face appearance varies more drastically across large poses, from the frontal view to the profile view. Third, labelling landmarks in large poses is extremely challenging since the invisible landmarks have to be guessed. In this paper, we propose to tackle these three challenges in an new alignment framework termed 3D Dense Face Alignment (3DDFA), in which a dense 3D Morphable Model (3DMM) is fitted to the image via Cascaded Convolutional Neural Networks. We also utilize 3D information to synthesize face images in profile views to provide abundant samples for training. Experiments on the challenging AFLW database show that the proposed approach achieves significant improvements over the state-of-the-art methods. |
doi_str_mv | 10.1109/TPAMI.2017.2778152 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2017_2778152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8122025</ieee_id><sourcerecordid>2068346122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-239b77209112936d3f3fbf946b4e9012626890017ab102f3dfa629b8b70990f3</originalsourceid><addsrcrecordid>eNpdkEFPg0AQhTdGY2v1D2hiNvHihTozW5Zdb6RabVJjo9w3QJeGhkJl4eC_F2ztwdMc5nsvLx9j1whjRNAP0TJ8m48JMBhTECj06YQNUQvtCV_oUzYElOQpRWrALpzbAODEB3HOBqS1BvDVkMlZnFoeFvm63Nqy4XnJZ21R8GXlLP-Iy7V95CEXTzyqmrjgn1XRNnlVXrKzLC6cvTrcEYtmz9H01Vu8v8yn4cJLhY-NR0InQUCgEUkLuRKZyJJMT2QysRqQJEnVDcEgThAoE6sslqQTlQTQDczEiN3va3d19dVa15ht7lJbFHFpq9YZAqnERCJRh979QzdVW5fdOEPoYw9BT9GeSuvKudpmZlfn27j-Ngiml2p-pZpeqjlI7UK3h-o22drVMfJnsQNu9kBurT2-VTcLyBc_TzN2Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151461202</pqid></control><display><type>article</type><title>Face Alignment in Full Pose Range: A 3D Total Solution</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Xiangyu ; Liu, Xiaoming ; Lei, Zhen ; Li, Stan Z.</creator><creatorcontrib>Zhu, Xiangyu ; Liu, Xiaoming ; Lei, Zhen ; Li, Stan Z.</creatorcontrib><description>Face alignment, which fits a face model to an image and extracts the semantic meanings of facial pixels, has been an important topic in the computer vision community. However, most algorithms are designed for faces in small to medium poses (yaw angle is smaller than 45 degree), which lack the ability to align faces in large poses up to 90 degree. The challenges are three-fold. First, the commonly used landmark face model assumes that all the landmarks are visible and is therefore not suitable for large poses. Second, the face appearance varies more drastically across large poses, from the frontal view to the profile view. Third, labelling landmarks in large poses is extremely challenging since the invisible landmarks have to be guessed. In this paper, we propose to tackle these three challenges in an new alignment framework termed 3D Dense Face Alignment (3DDFA), in which a dense 3D Morphable Model (3DMM) is fitted to the image via Cascaded Convolutional Neural Networks. We also utilize 3D information to synthesize face images in profile views to provide abundant samples for training. Experiments on the challenging AFLW database show that the proposed approach achieves significant improvements over the state-of-the-art methods.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2778152</identifier><identifier>PMID: 29990058</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D morphable model ; Alignment ; Artificial neural networks ; cascaded regression ; Computer vision ; convolutional neural network ; Face ; Face alignment ; Landmarks ; Shape ; Solid modeling ; State of the art ; Three dimensional models ; Three-dimensional displays ; Training ; Two dimensional displays ; Yaw</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2019-01, Vol.41 (1), p.78-92</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-239b77209112936d3f3fbf946b4e9012626890017ab102f3dfa629b8b70990f3</citedby><cites>FETCH-LOGICAL-c351t-239b77209112936d3f3fbf946b4e9012626890017ab102f3dfa629b8b70990f3</cites><orcidid>0000-0002-0791-189X ; 0000-0003-2756-401X ; 0000-0003-3215-8753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8122025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8122025$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29990058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiangyu</creatorcontrib><creatorcontrib>Liu, Xiaoming</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><title>Face Alignment in Full Pose Range: A 3D Total Solution</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Face alignment, which fits a face model to an image and extracts the semantic meanings of facial pixels, has been an important topic in the computer vision community. However, most algorithms are designed for faces in small to medium poses (yaw angle is smaller than 45 degree), which lack the ability to align faces in large poses up to 90 degree. The challenges are three-fold. First, the commonly used landmark face model assumes that all the landmarks are visible and is therefore not suitable for large poses. Second, the face appearance varies more drastically across large poses, from the frontal view to the profile view. Third, labelling landmarks in large poses is extremely challenging since the invisible landmarks have to be guessed. In this paper, we propose to tackle these three challenges in an new alignment framework termed 3D Dense Face Alignment (3DDFA), in which a dense 3D Morphable Model (3DMM) is fitted to the image via Cascaded Convolutional Neural Networks. We also utilize 3D information to synthesize face images in profile views to provide abundant samples for training. Experiments on the challenging AFLW database show that the proposed approach achieves significant improvements over the state-of-the-art methods.</description><subject>3D morphable model</subject><subject>Alignment</subject><subject>Artificial neural networks</subject><subject>cascaded regression</subject><subject>Computer vision</subject><subject>convolutional neural network</subject><subject>Face</subject><subject>Face alignment</subject><subject>Landmarks</subject><subject>Shape</subject><subject>Solid modeling</subject><subject>State of the art</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Two dimensional displays</subject><subject>Yaw</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFPg0AQhTdGY2v1D2hiNvHihTozW5Zdb6RabVJjo9w3QJeGhkJl4eC_F2ztwdMc5nsvLx9j1whjRNAP0TJ8m48JMBhTECj06YQNUQvtCV_oUzYElOQpRWrALpzbAODEB3HOBqS1BvDVkMlZnFoeFvm63Nqy4XnJZ21R8GXlLP-Iy7V95CEXTzyqmrjgn1XRNnlVXrKzLC6cvTrcEYtmz9H01Vu8v8yn4cJLhY-NR0InQUCgEUkLuRKZyJJMT2QysRqQJEnVDcEgThAoE6sslqQTlQTQDczEiN3va3d19dVa15ht7lJbFHFpq9YZAqnERCJRh979QzdVW5fdOEPoYw9BT9GeSuvKudpmZlfn27j-Ngiml2p-pZpeqjlI7UK3h-o22drVMfJnsQNu9kBurT2-VTcLyBc_TzN2Lw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhu, Xiangyu</creator><creator>Liu, Xiaoming</creator><creator>Lei, Zhen</creator><creator>Li, Stan Z.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0791-189X</orcidid><orcidid>https://orcid.org/0000-0003-2756-401X</orcidid><orcidid>https://orcid.org/0000-0003-3215-8753</orcidid></search><sort><creationdate>20190101</creationdate><title>Face Alignment in Full Pose Range: A 3D Total Solution</title><author>Zhu, Xiangyu ; Liu, Xiaoming ; Lei, Zhen ; Li, Stan Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-239b77209112936d3f3fbf946b4e9012626890017ab102f3dfa629b8b70990f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D morphable model</topic><topic>Alignment</topic><topic>Artificial neural networks</topic><topic>cascaded regression</topic><topic>Computer vision</topic><topic>convolutional neural network</topic><topic>Face</topic><topic>Face alignment</topic><topic>Landmarks</topic><topic>Shape</topic><topic>Solid modeling</topic><topic>State of the art</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Two dimensional displays</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiangyu</creatorcontrib><creatorcontrib>Liu, Xiaoming</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Xiangyu</au><au>Liu, Xiaoming</au><au>Lei, Zhen</au><au>Li, Stan Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face Alignment in Full Pose Range: A 3D Total Solution</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>41</volume><issue>1</issue><spage>78</spage><epage>92</epage><pages>78-92</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Face alignment, which fits a face model to an image and extracts the semantic meanings of facial pixels, has been an important topic in the computer vision community. However, most algorithms are designed for faces in small to medium poses (yaw angle is smaller than 45 degree), which lack the ability to align faces in large poses up to 90 degree. The challenges are three-fold. First, the commonly used landmark face model assumes that all the landmarks are visible and is therefore not suitable for large poses. Second, the face appearance varies more drastically across large poses, from the frontal view to the profile view. Third, labelling landmarks in large poses is extremely challenging since the invisible landmarks have to be guessed. In this paper, we propose to tackle these three challenges in an new alignment framework termed 3D Dense Face Alignment (3DDFA), in which a dense 3D Morphable Model (3DMM) is fitted to the image via Cascaded Convolutional Neural Networks. We also utilize 3D information to synthesize face images in profile views to provide abundant samples for training. Experiments on the challenging AFLW database show that the proposed approach achieves significant improvements over the state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29990058</pmid><doi>10.1109/TPAMI.2017.2778152</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0791-189X</orcidid><orcidid>https://orcid.org/0000-0003-2756-401X</orcidid><orcidid>https://orcid.org/0000-0003-3215-8753</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2019-01, Vol.41 (1), p.78-92 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2017_2778152 |
source | IEEE Electronic Library (IEL) |
subjects | 3D morphable model Alignment Artificial neural networks cascaded regression Computer vision convolutional neural network Face Face alignment Landmarks Shape Solid modeling State of the art Three dimensional models Three-dimensional displays Training Two dimensional displays Yaw |
title | Face Alignment in Full Pose Range: A 3D Total Solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20Alignment%20in%20Full%20Pose%20Range:%20A%203D%20Total%20Solution&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhu,%20Xiangyu&rft.date=2019-01-01&rft.volume=41&rft.issue=1&rft.spage=78&rft.epage=92&rft.pages=78-92&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2778152&rft_dat=%3Cproquest_RIE%3E2068346122%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151461202&rft_id=info:pmid/29990058&rft_ieee_id=8122025&rfr_iscdi=true |