Multi-Gait Recognition Based on Attribute Discovery

Gait recognition is an important topic in biometrics. Current works primarily focus on recognizing a single person's walking gait. However, a person's gait will change when they walk with other people. How to recognize the gait of multiple people walking is still a challenging problem. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2018-07, Vol.40 (7), p.1697-1710
Hauptverfasser: Chen, Xin, Weng, Jian, Lu, Wei, Xu, Jiaming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1710
container_issue 7
container_start_page 1697
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 40
creator Chen, Xin
Weng, Jian
Lu, Wei
Xu, Jiaming
description Gait recognition is an important topic in biometrics. Current works primarily focus on recognizing a single person's walking gait. However, a person's gait will change when they walk with other people. How to recognize the gait of multiple people walking is still a challenging problem. This paper proposes an attribute discovery model in a max-margin framework to recognize a person based on gait while walking with multiple people. First, human graphlets are integrated into a tracking-by-detection method to obtain a person's complete silhouette. Then, stable and discriminative attributes are developed using a latent conditional random field (L-CRF) model. The model is trained in the latent structural support vector machine (SVM) framework, in which a new constraint is added to improve the multi-gait recognition performance. In the recognition process, the attribute set of each person is detected by inferring on the trained L-CRF model. Finally, attributes based on dense trajectories are extracted as the final gait features to complete the recognition. The experimental results demonstrate that the proposed method achieves better recognition performance than traditional gait recognition methods under the condition of multiple people walking together.
doi_str_mv 10.1109/TPAMI.2017.2726061
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2017_2726061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7976333</ieee_id><sourcerecordid>1920199959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-b798034e4f3c6bb5a53186362acaee39be382b2067eda0084558406d9d5996c63</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobk7_gIIUvPGmMx_N1-WcOgcbiszrkLZnktG12qTC_r2Zm7swNwnkOS_veRC6JHhICNZ3i9fRfDqkmMghlVRgQY5Qn2imU8aZPkZ9TARNlaKqh868X2FMMo7ZKepRJbHiGe8jNu-q4NKJdSF5g6L5qF1wTZ3cWw9lEh-jEFqXdwGSB-eL5hvazTk6WdrKw8X-HqD3p8fF-DmdvUym49EsLTjBIc2lVphlkC1ZIfKcW86IEkxQW1gApnNgiuYUCwmlxVhlnKsMi1KXXGtRCDZAt7vcz7b56sAHs44VoKpsDU3nDdFxd6011xG9-Yeumq6tYztDicxiH662gXRHFW3jfQtL89m6tW03hmCzVWp-lZqtUrNXGoeu99FdvobyMPLnMAJXO8ABwOFbailYPD_pmHfd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174510586</pqid></control><display><type>article</type><title>Multi-Gait Recognition Based on Attribute Discovery</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xin ; Weng, Jian ; Lu, Wei ; Xu, Jiaming</creator><creatorcontrib>Chen, Xin ; Weng, Jian ; Lu, Wei ; Xu, Jiaming</creatorcontrib><description>Gait recognition is an important topic in biometrics. Current works primarily focus on recognizing a single person's walking gait. However, a person's gait will change when they walk with other people. How to recognize the gait of multiple people walking is still a challenging problem. This paper proposes an attribute discovery model in a max-margin framework to recognize a person based on gait while walking with multiple people. First, human graphlets are integrated into a tracking-by-detection method to obtain a person's complete silhouette. Then, stable and discriminative attributes are developed using a latent conditional random field (L-CRF) model. The model is trained in the latent structural support vector machine (SVM) framework, in which a new constraint is added to improve the multi-gait recognition performance. In the recognition process, the attribute set of each person is detected by inferring on the trained L-CRF model. Finally, attributes based on dense trajectories are extracted as the final gait features to complete the recognition. The experimental results demonstrate that the proposed method achieves better recognition performance than traditional gait recognition methods under the condition of multiple people walking together.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2726061</identifier><identifier>PMID: 28708545</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; attributes ; Biometric Identification - methods ; Biometrics ; Data privacy ; Data security ; Databases, Factual ; dense trajectories ; Feature extraction ; Feature recognition ; Female ; Gait - physiology ; Gait Analysis - methods ; Gait recognition ; Hidden Markov models ; human graphlets ; Humans ; latent structural SVM ; Legged locomotion ; Male ; Multi-gait recognition ; Pattern Recognition, Automated - methods ; Pose estimation ; Support Vector Machine ; Support vector machines ; Walking ; Young Adult</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-07, Vol.40 (7), p.1697-1710</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-b798034e4f3c6bb5a53186362acaee39be382b2067eda0084558406d9d5996c63</citedby><cites>FETCH-LOGICAL-c510t-b798034e4f3c6bb5a53186362acaee39be382b2067eda0084558406d9d5996c63</cites><orcidid>0000-0003-2903-5525 ; 0000-0003-4067-8230 ; 0000-0002-4068-1766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7976333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7976333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28708545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Xu, Jiaming</creatorcontrib><title>Multi-Gait Recognition Based on Attribute Discovery</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Gait recognition is an important topic in biometrics. Current works primarily focus on recognizing a single person's walking gait. However, a person's gait will change when they walk with other people. How to recognize the gait of multiple people walking is still a challenging problem. This paper proposes an attribute discovery model in a max-margin framework to recognize a person based on gait while walking with multiple people. First, human graphlets are integrated into a tracking-by-detection method to obtain a person's complete silhouette. Then, stable and discriminative attributes are developed using a latent conditional random field (L-CRF) model. The model is trained in the latent structural support vector machine (SVM) framework, in which a new constraint is added to improve the multi-gait recognition performance. In the recognition process, the attribute set of each person is detected by inferring on the trained L-CRF model. Finally, attributes based on dense trajectories are extracted as the final gait features to complete the recognition. The experimental results demonstrate that the proposed method achieves better recognition performance than traditional gait recognition methods under the condition of multiple people walking together.</description><subject>Adult</subject><subject>attributes</subject><subject>Biometric Identification - methods</subject><subject>Biometrics</subject><subject>Data privacy</subject><subject>Data security</subject><subject>Databases, Factual</subject><subject>dense trajectories</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Female</subject><subject>Gait - physiology</subject><subject>Gait Analysis - methods</subject><subject>Gait recognition</subject><subject>Hidden Markov models</subject><subject>human graphlets</subject><subject>Humans</subject><subject>latent structural SVM</subject><subject>Legged locomotion</subject><subject>Male</subject><subject>Multi-gait recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pose estimation</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Walking</subject><subject>Young Adult</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhoMobk7_gIIUvPGmMx_N1-WcOgcbiszrkLZnktG12qTC_r2Zm7swNwnkOS_veRC6JHhICNZ3i9fRfDqkmMghlVRgQY5Qn2imU8aZPkZ9TARNlaKqh868X2FMMo7ZKepRJbHiGe8jNu-q4NKJdSF5g6L5qF1wTZ3cWw9lEh-jEFqXdwGSB-eL5hvazTk6WdrKw8X-HqD3p8fF-DmdvUym49EsLTjBIc2lVphlkC1ZIfKcW86IEkxQW1gApnNgiuYUCwmlxVhlnKsMi1KXXGtRCDZAt7vcz7b56sAHs44VoKpsDU3nDdFxd6011xG9-Yeumq6tYztDicxiH662gXRHFW3jfQtL89m6tW03hmCzVWp-lZqtUrNXGoeu99FdvobyMPLnMAJXO8ABwOFbailYPD_pmHfd</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Chen, Xin</creator><creator>Weng, Jian</creator><creator>Lu, Wei</creator><creator>Xu, Jiaming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2903-5525</orcidid><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-4068-1766</orcidid></search><sort><creationdate>20180701</creationdate><title>Multi-Gait Recognition Based on Attribute Discovery</title><author>Chen, Xin ; Weng, Jian ; Lu, Wei ; Xu, Jiaming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-b798034e4f3c6bb5a53186362acaee39be382b2067eda0084558406d9d5996c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>attributes</topic><topic>Biometric Identification - methods</topic><topic>Biometrics</topic><topic>Data privacy</topic><topic>Data security</topic><topic>Databases, Factual</topic><topic>dense trajectories</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Female</topic><topic>Gait - physiology</topic><topic>Gait Analysis - methods</topic><topic>Gait recognition</topic><topic>Hidden Markov models</topic><topic>human graphlets</topic><topic>Humans</topic><topic>latent structural SVM</topic><topic>Legged locomotion</topic><topic>Male</topic><topic>Multi-gait recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pose estimation</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Walking</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Xu, Jiaming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xin</au><au>Weng, Jian</au><au>Lu, Wei</au><au>Xu, Jiaming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Gait Recognition Based on Attribute Discovery</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>40</volume><issue>7</issue><spage>1697</spage><epage>1710</epage><pages>1697-1710</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Gait recognition is an important topic in biometrics. Current works primarily focus on recognizing a single person's walking gait. However, a person's gait will change when they walk with other people. How to recognize the gait of multiple people walking is still a challenging problem. This paper proposes an attribute discovery model in a max-margin framework to recognize a person based on gait while walking with multiple people. First, human graphlets are integrated into a tracking-by-detection method to obtain a person's complete silhouette. Then, stable and discriminative attributes are developed using a latent conditional random field (L-CRF) model. The model is trained in the latent structural support vector machine (SVM) framework, in which a new constraint is added to improve the multi-gait recognition performance. In the recognition process, the attribute set of each person is detected by inferring on the trained L-CRF model. Finally, attributes based on dense trajectories are extracted as the final gait features to complete the recognition. The experimental results demonstrate that the proposed method achieves better recognition performance than traditional gait recognition methods under the condition of multiple people walking together.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28708545</pmid><doi>10.1109/TPAMI.2017.2726061</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2903-5525</orcidid><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-4068-1766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2018-07, Vol.40 (7), p.1697-1710
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2017_2726061
source IEEE Electronic Library (IEL)
subjects Adult
attributes
Biometric Identification - methods
Biometrics
Data privacy
Data security
Databases, Factual
dense trajectories
Feature extraction
Feature recognition
Female
Gait - physiology
Gait Analysis - methods
Gait recognition
Hidden Markov models
human graphlets
Humans
latent structural SVM
Legged locomotion
Male
Multi-gait recognition
Pattern Recognition, Automated - methods
Pose estimation
Support Vector Machine
Support vector machines
Walking
Young Adult
title Multi-Gait Recognition Based on Attribute Discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Gait%20Recognition%20Based%20on%20Attribute%20Discovery&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Chen,%20Xin&rft.date=2018-07-01&rft.volume=40&rft.issue=7&rft.spage=1697&rft.epage=1710&rft.pages=1697-1710&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2726061&rft_dat=%3Cproquest_RIE%3E1920199959%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174510586&rft_id=info:pmid/28708545&rft_ieee_id=7976333&rfr_iscdi=true