3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection

The goal of this paper is to perform 3D object detection in the context of autonomous driving. Our method aims at generating a set of high-quality 3D object proposals by exploiting stereo imagery. We formulate the problem as minimizing an energy function that encodes object size priors, placement of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2018-05, Vol.40 (5), p.1259-1272
Hauptverfasser: Chen, Xiaozhi, Kundu, Kaustav, Zhu, Yukun, Ma, Huimin, Fidler, Sanja, Urtasun, Raquel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1272
container_issue 5
container_start_page 1259
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 40
creator Chen, Xiaozhi
Kundu, Kaustav
Zhu, Yukun
Ma, Huimin
Fidler, Sanja
Urtasun, Raquel
description The goal of this paper is to perform 3D object detection in the context of autonomous driving. Our method aims at generating a set of high-quality 3D object proposals by exploiting stereo imagery. We formulate the problem as minimizing an energy function that encodes object size priors, placement of objects on the ground plane as well as several depth informed features that reason about free space, point cloud densities and distance to the ground. We then exploit a CNN on top of these proposals to perform object detection. In particular, we employ a convolutional neural net (CNN) that exploits context and depth information to jointly regress to 3D bounding box coordinates and object pose. Our experiments show significant performance gains over existing RGB and RGB-D object proposal methods on the challenging KITTI benchmark. When combined with the CNN, our approach outperforms all existing results in object detection and orientation estimation tasks for all three KITTI object classes. Furthermore, we experiment also with the setting where LIDAR information is available, and show that using both LIDAR and stereo leads to the best result.
doi_str_mv 10.1109/TPAMI.2017.2706685
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2017_2706685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7932113</ieee_id><sourcerecordid>1902482072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-7ec82c2e31b2e5fc8bd3e52c03529dfea93cd2176dac94a104119111170821d23</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWqt_QEEWvHjZmpnsR3Is9atQacF6DtnsrGzZNjXZPfjv3drqwVyGMM87MzyMXQEfAXB1v1yMX6cj5JCPMOdZJtMjNgAlVCxSoY7ZgEOGsZQoz9h5CCvOIUm5OGVnKNMEQGUDNhMP0bxYkW2jhXdbF0wTovdQbz6it5Y8uWi6Nh_kv6LK-WhsbedNS7-RSWNCiB6o7T-121ywk6rP0-WhDtn70-Ny8hLP5s_TyXgW2yTL2jgnK9EiCSiQ0srKohSUouUiRVVWZJSwJUKelcaqxADf3Qr9y7lEKFEM2d1-7ta7z45Cq9d1sNQ0ZkOuCxoUx0Qiz3fo7T905Tq_6a_T_YYkBc5V3lO4p6x3IXiq9NbXa-O_NHC9c61_XOuda31w3YduDqO7Yk3lX-RXbg9c74GaiP7auRIIIMQ30QSAjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174510097</pqid></control><display><type>article</type><title>3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xiaozhi ; Kundu, Kaustav ; Zhu, Yukun ; Ma, Huimin ; Fidler, Sanja ; Urtasun, Raquel</creator><creatorcontrib>Chen, Xiaozhi ; Kundu, Kaustav ; Zhu, Yukun ; Ma, Huimin ; Fidler, Sanja ; Urtasun, Raquel</creatorcontrib><description>The goal of this paper is to perform 3D object detection in the context of autonomous driving. Our method aims at generating a set of high-quality 3D object proposals by exploiting stereo imagery. We formulate the problem as minimizing an energy function that encodes object size priors, placement of objects on the ground plane as well as several depth informed features that reason about free space, point cloud densities and distance to the ground. We then exploit a CNN on top of these proposals to perform object detection. In particular, we employ a convolutional neural net (CNN) that exploits context and depth information to jointly regress to 3D bounding box coordinates and object pose. Our experiments show significant performance gains over existing RGB and RGB-D object proposal methods on the challenging KITTI benchmark. When combined with the CNN, our approach outperforms all existing results in object detection and orientation estimation tasks for all three KITTI object classes. Furthermore, we experiment also with the setting where LIDAR information is available, and show that using both LIDAR and stereo leads to the best result.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2706685</identifier><identifier>PMID: 28541196</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D object detection ; autonomous driving ; Context ; convolutional neural networks ; Detectors ; Ground plane ; Image detection ; Image quality ; Laser radar ; LIDAR ; Object detection ; Object proposals ; Object recognition ; Proposals ; Solid modeling ; stereo ; Three-dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-05, Vol.40 (5), p.1259-1272</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-7ec82c2e31b2e5fc8bd3e52c03529dfea93cd2176dac94a104119111170821d23</citedby><cites>FETCH-LOGICAL-c466t-7ec82c2e31b2e5fc8bd3e52c03529dfea93cd2176dac94a104119111170821d23</cites><orcidid>0000-0003-2703-5302 ; 0000-0001-5383-5667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7932113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7932113$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28541196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiaozhi</creatorcontrib><creatorcontrib>Kundu, Kaustav</creatorcontrib><creatorcontrib>Zhu, Yukun</creatorcontrib><creatorcontrib>Ma, Huimin</creatorcontrib><creatorcontrib>Fidler, Sanja</creatorcontrib><creatorcontrib>Urtasun, Raquel</creatorcontrib><title>3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The goal of this paper is to perform 3D object detection in the context of autonomous driving. Our method aims at generating a set of high-quality 3D object proposals by exploiting stereo imagery. We formulate the problem as minimizing an energy function that encodes object size priors, placement of objects on the ground plane as well as several depth informed features that reason about free space, point cloud densities and distance to the ground. We then exploit a CNN on top of these proposals to perform object detection. In particular, we employ a convolutional neural net (CNN) that exploits context and depth information to jointly regress to 3D bounding box coordinates and object pose. Our experiments show significant performance gains over existing RGB and RGB-D object proposal methods on the challenging KITTI benchmark. When combined with the CNN, our approach outperforms all existing results in object detection and orientation estimation tasks for all three KITTI object classes. Furthermore, we experiment also with the setting where LIDAR information is available, and show that using both LIDAR and stereo leads to the best result.</description><subject>3D object detection</subject><subject>autonomous driving</subject><subject>Context</subject><subject>convolutional neural networks</subject><subject>Detectors</subject><subject>Ground plane</subject><subject>Image detection</subject><subject>Image quality</subject><subject>Laser radar</subject><subject>LIDAR</subject><subject>Object detection</subject><subject>Object proposals</subject><subject>Object recognition</subject><subject>Proposals</subject><subject>Solid modeling</subject><subject>stereo</subject><subject>Three-dimensional displays</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWqt_QEEWvHjZmpnsR3Is9atQacF6DtnsrGzZNjXZPfjv3drqwVyGMM87MzyMXQEfAXB1v1yMX6cj5JCPMOdZJtMjNgAlVCxSoY7ZgEOGsZQoz9h5CCvOIUm5OGVnKNMEQGUDNhMP0bxYkW2jhXdbF0wTovdQbz6it5Y8uWi6Nh_kv6LK-WhsbedNS7-RSWNCiB6o7T-121ywk6rP0-WhDtn70-Ny8hLP5s_TyXgW2yTL2jgnK9EiCSiQ0srKohSUouUiRVVWZJSwJUKelcaqxADf3Qr9y7lEKFEM2d1-7ta7z45Cq9d1sNQ0ZkOuCxoUx0Qiz3fo7T905Tq_6a_T_YYkBc5V3lO4p6x3IXiq9NbXa-O_NHC9c61_XOuda31w3YduDqO7Yk3lX-RXbg9c74GaiP7auRIIIMQ30QSAjQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Chen, Xiaozhi</creator><creator>Kundu, Kaustav</creator><creator>Zhu, Yukun</creator><creator>Ma, Huimin</creator><creator>Fidler, Sanja</creator><creator>Urtasun, Raquel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2703-5302</orcidid><orcidid>https://orcid.org/0000-0001-5383-5667</orcidid></search><sort><creationdate>20180501</creationdate><title>3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection</title><author>Chen, Xiaozhi ; Kundu, Kaustav ; Zhu, Yukun ; Ma, Huimin ; Fidler, Sanja ; Urtasun, Raquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-7ec82c2e31b2e5fc8bd3e52c03529dfea93cd2176dac94a104119111170821d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D object detection</topic><topic>autonomous driving</topic><topic>Context</topic><topic>convolutional neural networks</topic><topic>Detectors</topic><topic>Ground plane</topic><topic>Image detection</topic><topic>Image quality</topic><topic>Laser radar</topic><topic>LIDAR</topic><topic>Object detection</topic><topic>Object proposals</topic><topic>Object recognition</topic><topic>Proposals</topic><topic>Solid modeling</topic><topic>stereo</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaozhi</creatorcontrib><creatorcontrib>Kundu, Kaustav</creatorcontrib><creatorcontrib>Zhu, Yukun</creatorcontrib><creatorcontrib>Ma, Huimin</creatorcontrib><creatorcontrib>Fidler, Sanja</creatorcontrib><creatorcontrib>Urtasun, Raquel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xiaozhi</au><au>Kundu, Kaustav</au><au>Zhu, Yukun</au><au>Ma, Huimin</au><au>Fidler, Sanja</au><au>Urtasun, Raquel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>40</volume><issue>5</issue><spage>1259</spage><epage>1272</epage><pages>1259-1272</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>The goal of this paper is to perform 3D object detection in the context of autonomous driving. Our method aims at generating a set of high-quality 3D object proposals by exploiting stereo imagery. We formulate the problem as minimizing an energy function that encodes object size priors, placement of objects on the ground plane as well as several depth informed features that reason about free space, point cloud densities and distance to the ground. We then exploit a CNN on top of these proposals to perform object detection. In particular, we employ a convolutional neural net (CNN) that exploits context and depth information to jointly regress to 3D bounding box coordinates and object pose. Our experiments show significant performance gains over existing RGB and RGB-D object proposal methods on the challenging KITTI benchmark. When combined with the CNN, our approach outperforms all existing results in object detection and orientation estimation tasks for all three KITTI object classes. Furthermore, we experiment also with the setting where LIDAR information is available, and show that using both LIDAR and stereo leads to the best result.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28541196</pmid><doi>10.1109/TPAMI.2017.2706685</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2703-5302</orcidid><orcidid>https://orcid.org/0000-0001-5383-5667</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2018-05, Vol.40 (5), p.1259-1272
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2017_2706685
source IEEE Electronic Library (IEL)
subjects 3D object detection
autonomous driving
Context
convolutional neural networks
Detectors
Ground plane
Image detection
Image quality
Laser radar
LIDAR
Object detection
Object proposals
Object recognition
Proposals
Solid modeling
stereo
Three-dimensional displays
title 3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Object%20Proposals%20Using%20Stereo%20Imagery%20for%20Accurate%20Object%20Class%20Detection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Chen,%20Xiaozhi&rft.date=2018-05-01&rft.volume=40&rft.issue=5&rft.spage=1259&rft.epage=1272&rft.pages=1259-1272&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2706685&rft_dat=%3Cproquest_RIE%3E1902482072%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174510097&rft_id=info:pmid/28541196&rft_ieee_id=7932113&rfr_iscdi=true