Personalized Age Progression with Bi-Level Aging Dictionary Learning
Age progression is defined as aesthetically re-rendering the aging face at any future age for an individual face. In this work, we aim to automatically render aging faces in a personalized way. Basically, for each age group, we learn an aging dictionary to reveal its aging characteristics (e.g., wri...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2018-04, Vol.40 (4), p.905-917 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 917 |
---|---|
container_issue | 4 |
container_start_page | 905 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 40 |
creator | Shu, Xiangbo Tang, Jinhui Li, Zechao Lai, Hanjiang Zhang, Liyan Yan, Shuicheng |
description | Age progression is defined as aesthetically re-rendering the aging face at any future age for an individual face. In this work, we aim to automatically render aging faces in a personalized way. Basically, for each age group, we learn an aging dictionary to reveal its aging characteristics (e.g., wrinkles), where the dictionary bases corresponding to the same index yet from two neighboring aging dictionaries form a particular aging pattern cross these two age groups, and a linear combination of all these patterns expresses a particular personalized aging process. Moreover, two factors are taken into consideration in the dictionary learning process. First, beyond the aging dictionaries, each person may have extra personalized facial characteristics, e.g., mole, which are invariant in the aging process. Second, it is challenging or even impossible to collect faces of all age groups for a particular person, yet much easier and more practical to get face pairs from neighboring age groups. To this end, we propose a novel Bi-level Dictionary Learning based Personalized Age Progression (BDL-PAP) method. Here, bi-level dictionary learning is formulated to learn the aging dictionaries based on face pairs from neighboring age groups. Extensive experiments well demonstrate the advantages of the proposed BDL-PAP over other state-of-the-arts in term of personalized age progression, as well as the performance gain for cross-age face verification by synthesizing aging faces. |
doi_str_mv | 10.1109/TPAMI.2017.2705122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2017_2705122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7930470</ieee_id><sourcerecordid>2174493639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-8ca50ac388454526f60dac8e5f9c0c437255b07f42fdb55dcc4f5be69f2d55543</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EgvL4AZBQJDZsUvyaxF6W8qpURBdlbaXOpLhKk2I3IPh6DC0sWI0099yR5hByymifMaqvppPB46jPKcv7PKfAON8hPaaFTgUIvUt6lGU8VYqrA3IYwoJSJoGKfXLAFQiZZ6pHbiboQ9sUtfvEMhnMMZn4du4xBNc2ybtbvyTXLh3jG9Yxdc08uXF2HbPCfyRjLHwTd8dkryrqgCfbeUSe726nw4d0_HQ_Gg7GqRUa1qmyBdDCCqUkSOBZldGysAqh0pZaKXIOMKN5JXlVzgBKa2UFM8x0xUsAkOKIXG7urnz72mFYm6ULFuu6aLDtgmE6usiE0iyiF__QRdv5-GcwnOVSapEJHSm-oaxvQ_BYmZV3y_iaYdR8OzY_js23Y7N1HEvn29PdbInlX-VXagTONoBDxL8414LKnIovV_h-2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174493639</pqid></control><display><type>article</type><title>Personalized Age Progression with Bi-Level Aging Dictionary Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Shu, Xiangbo ; Tang, Jinhui ; Li, Zechao ; Lai, Hanjiang ; Zhang, Liyan ; Yan, Shuicheng</creator><creatorcontrib>Shu, Xiangbo ; Tang, Jinhui ; Li, Zechao ; Lai, Hanjiang ; Zhang, Liyan ; Yan, Shuicheng</creatorcontrib><description>Age progression is defined as aesthetically re-rendering the aging face at any future age for an individual face. In this work, we aim to automatically render aging faces in a personalized way. Basically, for each age group, we learn an aging dictionary to reveal its aging characteristics (e.g., wrinkles), where the dictionary bases corresponding to the same index yet from two neighboring aging dictionaries form a particular aging pattern cross these two age groups, and a linear combination of all these patterns expresses a particular personalized aging process. Moreover, two factors are taken into consideration in the dictionary learning process. First, beyond the aging dictionaries, each person may have extra personalized facial characteristics, e.g., mole, which are invariant in the aging process. Second, it is challenging or even impossible to collect faces of all age groups for a particular person, yet much easier and more practical to get face pairs from neighboring age groups. To this end, we propose a novel Bi-level Dictionary Learning based Personalized Age Progression (BDL-PAP) method. Here, bi-level dictionary learning is formulated to learn the aging dictionaries based on face pairs from neighboring age groups. Extensive experiments well demonstrate the advantages of the proposed BDL-PAP over other state-of-the-arts in term of personalized age progression, as well as the performance gain for cross-age face verification by synthesizing aging faces.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2705122</identifier><identifier>PMID: 28534768</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Age ; Age groups ; Age progression ; Aging ; aging dictionary ; Analytical models ; Dictionaries ; dictionary learning ; Face ; Face recognition ; face synthesis ; Indexes ; Learning ; Performance gain</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-04, Vol.40 (4), p.905-917</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-8ca50ac388454526f60dac8e5f9c0c437255b07f42fdb55dcc4f5be69f2d55543</citedby><cites>FETCH-LOGICAL-c395t-8ca50ac388454526f60dac8e5f9c0c437255b07f42fdb55dcc4f5be69f2d55543</cites><orcidid>0000-0002-5341-5985 ; 0000-0003-4902-4663 ; 0000-0001-9008-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7930470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7930470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28534768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Xiangbo</creatorcontrib><creatorcontrib>Tang, Jinhui</creatorcontrib><creatorcontrib>Li, Zechao</creatorcontrib><creatorcontrib>Lai, Hanjiang</creatorcontrib><creatorcontrib>Zhang, Liyan</creatorcontrib><creatorcontrib>Yan, Shuicheng</creatorcontrib><title>Personalized Age Progression with Bi-Level Aging Dictionary Learning</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Age progression is defined as aesthetically re-rendering the aging face at any future age for an individual face. In this work, we aim to automatically render aging faces in a personalized way. Basically, for each age group, we learn an aging dictionary to reveal its aging characteristics (e.g., wrinkles), where the dictionary bases corresponding to the same index yet from two neighboring aging dictionaries form a particular aging pattern cross these two age groups, and a linear combination of all these patterns expresses a particular personalized aging process. Moreover, two factors are taken into consideration in the dictionary learning process. First, beyond the aging dictionaries, each person may have extra personalized facial characteristics, e.g., mole, which are invariant in the aging process. Second, it is challenging or even impossible to collect faces of all age groups for a particular person, yet much easier and more practical to get face pairs from neighboring age groups. To this end, we propose a novel Bi-level Dictionary Learning based Personalized Age Progression (BDL-PAP) method. Here, bi-level dictionary learning is formulated to learn the aging dictionaries based on face pairs from neighboring age groups. Extensive experiments well demonstrate the advantages of the proposed BDL-PAP over other state-of-the-arts in term of personalized age progression, as well as the performance gain for cross-age face verification by synthesizing aging faces.</description><subject>Age</subject><subject>Age groups</subject><subject>Age progression</subject><subject>Aging</subject><subject>aging dictionary</subject><subject>Analytical models</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Face</subject><subject>Face recognition</subject><subject>face synthesis</subject><subject>Indexes</subject><subject>Learning</subject><subject>Performance gain</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EgvL4AZBQJDZsUvyaxF6W8qpURBdlbaXOpLhKk2I3IPh6DC0sWI0099yR5hByymifMaqvppPB46jPKcv7PKfAON8hPaaFTgUIvUt6lGU8VYqrA3IYwoJSJoGKfXLAFQiZZ6pHbiboQ9sUtfvEMhnMMZn4du4xBNc2ybtbvyTXLh3jG9Yxdc08uXF2HbPCfyRjLHwTd8dkryrqgCfbeUSe726nw4d0_HQ_Gg7GqRUa1qmyBdDCCqUkSOBZldGysAqh0pZaKXIOMKN5JXlVzgBKa2UFM8x0xUsAkOKIXG7urnz72mFYm6ULFuu6aLDtgmE6usiE0iyiF__QRdv5-GcwnOVSapEJHSm-oaxvQ_BYmZV3y_iaYdR8OzY_js23Y7N1HEvn29PdbInlX-VXagTONoBDxL8414LKnIovV_h-2A</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Shu, Xiangbo</creator><creator>Tang, Jinhui</creator><creator>Li, Zechao</creator><creator>Lai, Hanjiang</creator><creator>Zhang, Liyan</creator><creator>Yan, Shuicheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5341-5985</orcidid><orcidid>https://orcid.org/0000-0003-4902-4663</orcidid><orcidid>https://orcid.org/0000-0001-9008-222X</orcidid></search><sort><creationdate>20180401</creationdate><title>Personalized Age Progression with Bi-Level Aging Dictionary Learning</title><author>Shu, Xiangbo ; Tang, Jinhui ; Li, Zechao ; Lai, Hanjiang ; Zhang, Liyan ; Yan, Shuicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-8ca50ac388454526f60dac8e5f9c0c437255b07f42fdb55dcc4f5be69f2d55543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age</topic><topic>Age groups</topic><topic>Age progression</topic><topic>Aging</topic><topic>aging dictionary</topic><topic>Analytical models</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Face</topic><topic>Face recognition</topic><topic>face synthesis</topic><topic>Indexes</topic><topic>Learning</topic><topic>Performance gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Xiangbo</creatorcontrib><creatorcontrib>Tang, Jinhui</creatorcontrib><creatorcontrib>Li, Zechao</creatorcontrib><creatorcontrib>Lai, Hanjiang</creatorcontrib><creatorcontrib>Zhang, Liyan</creatorcontrib><creatorcontrib>Yan, Shuicheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu, Xiangbo</au><au>Tang, Jinhui</au><au>Li, Zechao</au><au>Lai, Hanjiang</au><au>Zhang, Liyan</au><au>Yan, Shuicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized Age Progression with Bi-Level Aging Dictionary Learning</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>40</volume><issue>4</issue><spage>905</spage><epage>917</epage><pages>905-917</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Age progression is defined as aesthetically re-rendering the aging face at any future age for an individual face. In this work, we aim to automatically render aging faces in a personalized way. Basically, for each age group, we learn an aging dictionary to reveal its aging characteristics (e.g., wrinkles), where the dictionary bases corresponding to the same index yet from two neighboring aging dictionaries form a particular aging pattern cross these two age groups, and a linear combination of all these patterns expresses a particular personalized aging process. Moreover, two factors are taken into consideration in the dictionary learning process. First, beyond the aging dictionaries, each person may have extra personalized facial characteristics, e.g., mole, which are invariant in the aging process. Second, it is challenging or even impossible to collect faces of all age groups for a particular person, yet much easier and more practical to get face pairs from neighboring age groups. To this end, we propose a novel Bi-level Dictionary Learning based Personalized Age Progression (BDL-PAP) method. Here, bi-level dictionary learning is formulated to learn the aging dictionaries based on face pairs from neighboring age groups. Extensive experiments well demonstrate the advantages of the proposed BDL-PAP over other state-of-the-arts in term of personalized age progression, as well as the performance gain for cross-age face verification by synthesizing aging faces.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28534768</pmid><doi>10.1109/TPAMI.2017.2705122</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5341-5985</orcidid><orcidid>https://orcid.org/0000-0003-4902-4663</orcidid><orcidid>https://orcid.org/0000-0001-9008-222X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2018-04, Vol.40 (4), p.905-917 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2017_2705122 |
source | IEEE Electronic Library (IEL) |
subjects | Age Age groups Age progression Aging aging dictionary Analytical models Dictionaries dictionary learning Face Face recognition face synthesis Indexes Learning Performance gain |
title | Personalized Age Progression with Bi-Level Aging Dictionary Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20Age%20Progression%20with%20Bi-Level%20Aging%20Dictionary%20Learning&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Shu,%20Xiangbo&rft.date=2018-04-01&rft.volume=40&rft.issue=4&rft.spage=905&rft.epage=917&rft.pages=905-917&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2705122&rft_dat=%3Cproquest_RIE%3E2174493639%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174493639&rft_id=info:pmid/28534768&rft_ieee_id=7930470&rfr_iscdi=true |