EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis
Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators ba...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2016-12, Vol.38 (12), p.2402-2415 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2415 |
---|---|
container_issue | 12 |
container_start_page | 2402 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 38 |
creator | Gebru, Israel Dejene Alameda-Pineda, Xavier Forbes, Florence Horaud, Radu |
description | Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and nonparametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis. |
doi_str_mv | 10.1109/TPAMI.2016.2522425 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2016_2522425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7393841</ieee_id><sourcerecordid>1837302191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-d04587d236041be141d56ddd3670de39e73a7b15fbe3b8d4015bb6af5ed4e04d3</originalsourceid><addsrcrecordid>eNpd0U2P0zAQBmALgdhS-AMgIUtc4JDi8Uc-jlFZ2JW6AokFJC6WE09ar9y4ayeg_fekpPTAyZLnmdGMXkJeAlsBsOr97Zf65nrFGeQrrjiXXD0iC6hElQklqsdkMVV4Vpa8vCDPUrpjDKRi4im54EXJpSr5gvy8vKG134boht0-0S5E-gPddjegzT6YwdC1H9OA0fVb-nsytD4cvGvN4EJPh0Dr0bqQfXdpNJ5-bbFHWvfGPySXnpMnnfEJX5zeJfn28fJ2fZVtPn-6XtebrJW8GjLLpk0Ky0XOJDQIEqzKrbUiL5hFUWEhTNGA6hoUTWklA9U0uekUWolMWrEk7-a5O-P1Ibq9iQ86GKev6o0-_jHgOYhC_oLJvp3tIYb7EdOg9y616L3pMYxJQykKwThUR_rmP3oXxjjdNisAzia7JHxWbQwpRezOGwDTx5T035T0MSV9Smlqen0aPTZ7tOeWf7FM4NUMHCKey4WoRClB_AHR3JRN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837112037</pqid></control><display><type>article</type><title>EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Gebru, Israel Dejene ; Alameda-Pineda, Xavier ; Forbes, Florence ; Horaud, Radu</creator><creatorcontrib>Gebru, Israel Dejene ; Alameda-Pineda, Xavier ; Forbes, Florence ; Horaud, Radu</creatorcontrib><description>Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and nonparametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2522425</identifier><identifier>PMID: 27824582</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Audio data ; audio-visual fusion ; Bayes methods ; Clustering ; Clustering algorithms ; Computer Science ; Computer Vision and Pattern Recognition ; Data analysis ; expectation-maximization ; Finite mixtures ; Machine Learning ; Maximum likelihood estimators ; minimum message length ; Mixture models ; model selection ; outlier detection ; Probabilistic models ; Probability distribution functions ; Random variables ; robust clustering ; Robustness ; Robustness (mathematics) ; Scene analysis ; Software algorithms ; Sound ; speaker localization ; Statistics ; weighted-data clustering</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2016-12, Vol.38 (12), p.2402-2415</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-d04587d236041be141d56ddd3670de39e73a7b15fbe3b8d4015bb6af5ed4e04d3</citedby><cites>FETCH-LOGICAL-c429t-d04587d236041be141d56ddd3670de39e73a7b15fbe3b8d4015bb6af5ed4e04d3</cites><orcidid>0000-0001-5232-024X ; 0000-0002-5354-1084 ; 0000-0003-3639-0226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7393841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7393841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27824582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01261374$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gebru, Israel Dejene</creatorcontrib><creatorcontrib>Alameda-Pineda, Xavier</creatorcontrib><creatorcontrib>Forbes, Florence</creatorcontrib><creatorcontrib>Horaud, Radu</creatorcontrib><title>EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and nonparametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Audio data</subject><subject>audio-visual fusion</subject><subject>Bayes methods</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Data analysis</subject><subject>expectation-maximization</subject><subject>Finite mixtures</subject><subject>Machine Learning</subject><subject>Maximum likelihood estimators</subject><subject>minimum message length</subject><subject>Mixture models</subject><subject>model selection</subject><subject>outlier detection</subject><subject>Probabilistic models</subject><subject>Probability distribution functions</subject><subject>Random variables</subject><subject>robust clustering</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Scene analysis</subject><subject>Software algorithms</subject><subject>Sound</subject><subject>speaker localization</subject><subject>Statistics</subject><subject>weighted-data clustering</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0U2P0zAQBmALgdhS-AMgIUtc4JDi8Uc-jlFZ2JW6AokFJC6WE09ar9y4ayeg_fekpPTAyZLnmdGMXkJeAlsBsOr97Zf65nrFGeQrrjiXXD0iC6hElQklqsdkMVV4Vpa8vCDPUrpjDKRi4im54EXJpSr5gvy8vKG134boht0-0S5E-gPddjegzT6YwdC1H9OA0fVb-nsytD4cvGvN4EJPh0Dr0bqQfXdpNJ5-bbFHWvfGPySXnpMnnfEJX5zeJfn28fJ2fZVtPn-6XtebrJW8GjLLpk0Ky0XOJDQIEqzKrbUiL5hFUWEhTNGA6hoUTWklA9U0uekUWolMWrEk7-a5O-P1Ibq9iQ86GKev6o0-_jHgOYhC_oLJvp3tIYb7EdOg9y616L3pMYxJQykKwThUR_rmP3oXxjjdNisAzia7JHxWbQwpRezOGwDTx5T035T0MSV9Smlqen0aPTZ7tOeWf7FM4NUMHCKey4WoRClB_AHR3JRN</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Gebru, Israel Dejene</creator><creator>Alameda-Pineda, Xavier</creator><creator>Forbes, Florence</creator><creator>Horaud, Radu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5232-024X</orcidid><orcidid>https://orcid.org/0000-0002-5354-1084</orcidid><orcidid>https://orcid.org/0000-0003-3639-0226</orcidid></search><sort><creationdate>20161201</creationdate><title>EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis</title><author>Gebru, Israel Dejene ; Alameda-Pineda, Xavier ; Forbes, Florence ; Horaud, Radu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-d04587d236041be141d56ddd3670de39e73a7b15fbe3b8d4015bb6af5ed4e04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Audio data</topic><topic>audio-visual fusion</topic><topic>Bayes methods</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Data analysis</topic><topic>expectation-maximization</topic><topic>Finite mixtures</topic><topic>Machine Learning</topic><topic>Maximum likelihood estimators</topic><topic>minimum message length</topic><topic>Mixture models</topic><topic>model selection</topic><topic>outlier detection</topic><topic>Probabilistic models</topic><topic>Probability distribution functions</topic><topic>Random variables</topic><topic>robust clustering</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Scene analysis</topic><topic>Software algorithms</topic><topic>Sound</topic><topic>speaker localization</topic><topic>Statistics</topic><topic>weighted-data clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebru, Israel Dejene</creatorcontrib><creatorcontrib>Alameda-Pineda, Xavier</creatorcontrib><creatorcontrib>Forbes, Florence</creatorcontrib><creatorcontrib>Horaud, Radu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gebru, Israel Dejene</au><au>Alameda-Pineda, Xavier</au><au>Forbes, Florence</au><au>Horaud, Radu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>38</volume><issue>12</issue><spage>2402</spage><epage>2415</epage><pages>2402-2415</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and nonparametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27824582</pmid><doi>10.1109/TPAMI.2016.2522425</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5232-024X</orcidid><orcidid>https://orcid.org/0000-0002-5354-1084</orcidid><orcidid>https://orcid.org/0000-0003-3639-0226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2016-12, Vol.38 (12), p.2402-2415 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2016_2522425 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Audio data audio-visual fusion Bayes methods Clustering Clustering algorithms Computer Science Computer Vision and Pattern Recognition Data analysis expectation-maximization Finite mixtures Machine Learning Maximum likelihood estimators minimum message length Mixture models model selection outlier detection Probabilistic models Probability distribution functions Random variables robust clustering Robustness Robustness (mathematics) Scene analysis Software algorithms Sound speaker localization Statistics weighted-data clustering |
title | EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EM%20Algorithms%20for%20Weighted-Data%20Clustering%20with%20Application%20to%20Audio-Visual%20Scene%20Analysis&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Gebru,%20Israel%20Dejene&rft.date=2016-12-01&rft.volume=38&rft.issue=12&rft.spage=2402&rft.epage=2415&rft.pages=2402-2415&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2522425&rft_dat=%3Cproquest_RIE%3E1837302191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837112037&rft_id=info:pmid/27824582&rft_ieee_id=7393841&rfr_iscdi=true |