EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis

Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2016-12, Vol.38 (12), p.2402-2415
Hauptverfasser: Gebru, Israel Dejene, Alameda-Pineda, Xavier, Forbes, Florence, Horaud, Radu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2415
container_issue 12
container_start_page 2402
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 38
creator Gebru, Israel Dejene
Alameda-Pineda, Xavier
Forbes, Florence
Horaud, Radu
description Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and nonparametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.
doi_str_mv 10.1109/TPAMI.2016.2522425
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2016_2522425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7393841</ieee_id><sourcerecordid>1837302191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-d04587d236041be141d56ddd3670de39e73a7b15fbe3b8d4015bb6af5ed4e04d3</originalsourceid><addsrcrecordid>eNpd0U2P0zAQBmALgdhS-AMgIUtc4JDi8Uc-jlFZ2JW6AokFJC6WE09ar9y4ayeg_fekpPTAyZLnmdGMXkJeAlsBsOr97Zf65nrFGeQrrjiXXD0iC6hElQklqsdkMVV4Vpa8vCDPUrpjDKRi4im54EXJpSr5gvy8vKG134boht0-0S5E-gPddjegzT6YwdC1H9OA0fVb-nsytD4cvGvN4EJPh0Dr0bqQfXdpNJ5-bbFHWvfGPySXnpMnnfEJX5zeJfn28fJ2fZVtPn-6XtebrJW8GjLLpk0Ky0XOJDQIEqzKrbUiL5hFUWEhTNGA6hoUTWklA9U0uekUWolMWrEk7-a5O-P1Ibq9iQ86GKev6o0-_jHgOYhC_oLJvp3tIYb7EdOg9y616L3pMYxJQykKwThUR_rmP3oXxjjdNisAzia7JHxWbQwpRezOGwDTx5T035T0MSV9Smlqen0aPTZ7tOeWf7FM4NUMHCKey4WoRClB_AHR3JRN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837112037</pqid></control><display><type>article</type><title>EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Gebru, Israel Dejene ; Alameda-Pineda, Xavier ; Forbes, Florence ; Horaud, Radu</creator><creatorcontrib>Gebru, Israel Dejene ; Alameda-Pineda, Xavier ; Forbes, Florence ; Horaud, Radu</creatorcontrib><description>Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and nonparametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2522425</identifier><identifier>PMID: 27824582</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Audio data ; audio-visual fusion ; Bayes methods ; Clustering ; Clustering algorithms ; Computer Science ; Computer Vision and Pattern Recognition ; Data analysis ; expectation-maximization ; Finite mixtures ; Machine Learning ; Maximum likelihood estimators ; minimum message length ; Mixture models ; model selection ; outlier detection ; Probabilistic models ; Probability distribution functions ; Random variables ; robust clustering ; Robustness ; Robustness (mathematics) ; Scene analysis ; Software algorithms ; Sound ; speaker localization ; Statistics ; weighted-data clustering</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2016-12, Vol.38 (12), p.2402-2415</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-d04587d236041be141d56ddd3670de39e73a7b15fbe3b8d4015bb6af5ed4e04d3</citedby><cites>FETCH-LOGICAL-c429t-d04587d236041be141d56ddd3670de39e73a7b15fbe3b8d4015bb6af5ed4e04d3</cites><orcidid>0000-0001-5232-024X ; 0000-0002-5354-1084 ; 0000-0003-3639-0226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7393841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7393841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27824582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01261374$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gebru, Israel Dejene</creatorcontrib><creatorcontrib>Alameda-Pineda, Xavier</creatorcontrib><creatorcontrib>Forbes, Florence</creatorcontrib><creatorcontrib>Horaud, Radu</creatorcontrib><title>EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and nonparametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Audio data</subject><subject>audio-visual fusion</subject><subject>Bayes methods</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Data analysis</subject><subject>expectation-maximization</subject><subject>Finite mixtures</subject><subject>Machine Learning</subject><subject>Maximum likelihood estimators</subject><subject>minimum message length</subject><subject>Mixture models</subject><subject>model selection</subject><subject>outlier detection</subject><subject>Probabilistic models</subject><subject>Probability distribution functions</subject><subject>Random variables</subject><subject>robust clustering</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Scene analysis</subject><subject>Software algorithms</subject><subject>Sound</subject><subject>speaker localization</subject><subject>Statistics</subject><subject>weighted-data clustering</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0U2P0zAQBmALgdhS-AMgIUtc4JDi8Uc-jlFZ2JW6AokFJC6WE09ar9y4ayeg_fekpPTAyZLnmdGMXkJeAlsBsOr97Zf65nrFGeQrrjiXXD0iC6hElQklqsdkMVV4Vpa8vCDPUrpjDKRi4im54EXJpSr5gvy8vKG134boht0-0S5E-gPddjegzT6YwdC1H9OA0fVb-nsytD4cvGvN4EJPh0Dr0bqQfXdpNJ5-bbFHWvfGPySXnpMnnfEJX5zeJfn28fJ2fZVtPn-6XtebrJW8GjLLpk0Ky0XOJDQIEqzKrbUiL5hFUWEhTNGA6hoUTWklA9U0uekUWolMWrEk7-a5O-P1Ibq9iQ86GKev6o0-_jHgOYhC_oLJvp3tIYb7EdOg9y616L3pMYxJQykKwThUR_rmP3oXxjjdNisAzia7JHxWbQwpRezOGwDTx5T035T0MSV9Smlqen0aPTZ7tOeWf7FM4NUMHCKey4WoRClB_AHR3JRN</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Gebru, Israel Dejene</creator><creator>Alameda-Pineda, Xavier</creator><creator>Forbes, Florence</creator><creator>Horaud, Radu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5232-024X</orcidid><orcidid>https://orcid.org/0000-0002-5354-1084</orcidid><orcidid>https://orcid.org/0000-0003-3639-0226</orcidid></search><sort><creationdate>20161201</creationdate><title>EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis</title><author>Gebru, Israel Dejene ; Alameda-Pineda, Xavier ; Forbes, Florence ; Horaud, Radu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-d04587d236041be141d56ddd3670de39e73a7b15fbe3b8d4015bb6af5ed4e04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Audio data</topic><topic>audio-visual fusion</topic><topic>Bayes methods</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Data analysis</topic><topic>expectation-maximization</topic><topic>Finite mixtures</topic><topic>Machine Learning</topic><topic>Maximum likelihood estimators</topic><topic>minimum message length</topic><topic>Mixture models</topic><topic>model selection</topic><topic>outlier detection</topic><topic>Probabilistic models</topic><topic>Probability distribution functions</topic><topic>Random variables</topic><topic>robust clustering</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Scene analysis</topic><topic>Software algorithms</topic><topic>Sound</topic><topic>speaker localization</topic><topic>Statistics</topic><topic>weighted-data clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebru, Israel Dejene</creatorcontrib><creatorcontrib>Alameda-Pineda, Xavier</creatorcontrib><creatorcontrib>Forbes, Florence</creatorcontrib><creatorcontrib>Horaud, Radu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gebru, Israel Dejene</au><au>Alameda-Pineda, Xavier</au><au>Forbes, Florence</au><au>Horaud, Radu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>38</volume><issue>12</issue><spage>2402</spage><epage>2415</epage><pages>2402-2415</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and nonparametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27824582</pmid><doi>10.1109/TPAMI.2016.2522425</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5232-024X</orcidid><orcidid>https://orcid.org/0000-0002-5354-1084</orcidid><orcidid>https://orcid.org/0000-0003-3639-0226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2016-12, Vol.38 (12), p.2402-2415
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2016_2522425
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Audio data
audio-visual fusion
Bayes methods
Clustering
Clustering algorithms
Computer Science
Computer Vision and Pattern Recognition
Data analysis
expectation-maximization
Finite mixtures
Machine Learning
Maximum likelihood estimators
minimum message length
Mixture models
model selection
outlier detection
Probabilistic models
Probability distribution functions
Random variables
robust clustering
Robustness
Robustness (mathematics)
Scene analysis
Software algorithms
Sound
speaker localization
Statistics
weighted-data clustering
title EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EM%20Algorithms%20for%20Weighted-Data%20Clustering%20with%20Application%20to%20Audio-Visual%20Scene%20Analysis&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Gebru,%20Israel%20Dejene&rft.date=2016-12-01&rft.volume=38&rft.issue=12&rft.spage=2402&rft.epage=2415&rft.pages=2402-2415&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2522425&rft_dat=%3Cproquest_RIE%3E1837302191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837112037&rft_id=info:pmid/27824582&rft_ieee_id=7393841&rfr_iscdi=true