Learning Hybrid Image Templates (HIT) by Information Projection

This paper presents a novel framework for learning a generative image representation-the hybrid image template (HIT) from a small number (i.e., 3 \sim 20) of image examples. Each learned template is composed of, typically, 50 \sim 500 image patches whose geometric attributes (location, scale, orient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2012-07, Vol.34 (7), p.1354-1367
Hauptverfasser: Si, Zhangzhang, Zhu, Song-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1367
container_issue 7
container_start_page 1354
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 34
creator Si, Zhangzhang
Zhu, Song-Chun
description This paper presents a novel framework for learning a generative image representation-the hybrid image template (HIT) from a small number (i.e., 3 \sim 20) of image examples. Each learned template is composed of, typically, 50 \sim 500 image patches whose geometric attributes (location, scale, orientation) may adapt in a local neighborhood for deformation, and whose appearances are characterized, respectively, by four types of descriptors: local sketch (edge or bar), texture gradients with orientations, flatness regions, and colors. These heterogeneous patches are automatically ranked and selected from a large pool according to their information gains using an information projection framework. Intuitively, a patch has a higher information gain if 1) its feature statistics are consistent within the training examples and are distinctive from the statistics of negative examples (i.e., generic images or examples from other categories); and 2) its feature statistics have less intraclass variations. The learning process pursues the most informative (for either generative or discriminative purpose) patches one at a time and stops when the information gain is within statistical fluctuation. The template is associated with a well-normalized probability model that integrates the heterogeneous feature statistics. This automated feature selection procedure allows our algorithm to scale up to a wide range of image categories, from those with regular shapes to those with stochastic texture. The learned representation captures the intrinsic characteristics of the object or scene categories. We evaluate the hybrid image templates on several public benchmarks, and demonstrate classification performances on par with state-of-the-art methods like HoG+SVM, and when small training sample sizes are used, the proposed system shows a clear advantage.
doi_str_mv 10.1109/TPAMI.2011.227
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2011_227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095562</ieee_id><sourcerecordid>1038235126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-900cd676affd1d2b51637425a93090feca787e27bbb521fa8447202fa7e96ca63</originalsourceid><addsrcrecordid>eNqF0U1rGzEQBmBRWho36bWXQlkoheSwrmb0tTqVENp6wSU5uOdFqx2FNfvhSvbB_767tZtCLzlJoEfDzLyMvQO-BOD28-bh9ke5RA6wRDQv2AKssLlQwr5kCw4a86LA4oK9SWnLOUjFxWt2gQhSKigW7MuaXBza4TFbHevYNlnZu0fKNtTvOrenlF2vys1NVh-zcghj7N2-HYfsIY5b8vP1ir0Krkv09nxesp_fvm7uVvn6_nt5d7vOvZR6n1vOfaONdiE00GCtQAsjUTkruOWBvDOFITR1XSuE4AopDXIMzpDV3mlxya5PdXdx_HWgtK_6NnnqOjfQeEgVGAAllLLwPOWiQKEA56of_6Pb8RCHaZBJoZp6UtZOanlSPo4pRQrVLra9i8cJVXMK1Z8UqjmFakph-vDhXPZQ99Q88b9rn8CnM3DJuy5EN_g2_XNazj3Oo7w_uZaInp41t0ppFL8BkWOUuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1025787599</pqid></control><display><type>article</type><title>Learning Hybrid Image Templates (HIT) by Information Projection</title><source>IEEE Electronic Library (IEL)</source><creator>Si, Zhangzhang ; Zhu, Song-Chun</creator><creatorcontrib>Si, Zhangzhang ; Zhu, Song-Chun</creatorcontrib><description>This paper presents a novel framework for learning a generative image representation-the hybrid image template (HIT) from a small number (i.e., 3 \sim 20) of image examples. Each learned template is composed of, typically, 50 \sim 500 image patches whose geometric attributes (location, scale, orientation) may adapt in a local neighborhood for deformation, and whose appearances are characterized, respectively, by four types of descriptors: local sketch (edge or bar), texture gradients with orientations, flatness regions, and colors. These heterogeneous patches are automatically ranked and selected from a large pool according to their information gains using an information projection framework. Intuitively, a patch has a higher information gain if 1) its feature statistics are consistent within the training examples and are distinctive from the statistics of negative examples (i.e., generic images or examples from other categories); and 2) its feature statistics have less intraclass variations. The learning process pursues the most informative (for either generative or discriminative purpose) patches one at a time and stops when the information gain is within statistical fluctuation. The template is associated with a well-normalized probability model that integrates the heterogeneous feature statistics. This automated feature selection procedure allows our algorithm to scale up to a wide range of image categories, from those with regular shapes to those with stochastic texture. The learned representation captures the intrinsic characteristics of the object or scene categories. We evaluate the hybrid image templates on several public benchmarks, and demonstrate classification performances on par with state-of-the-art methods like HoG+SVM, and when small training sample sizes are used, the proposed system shows a clear advantage.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2011.227</identifier><identifier>PMID: 22144518</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Categories ; Computer science; control theory; systems ; Deformable models ; deformable templates ; Exact sciences and technology ; Gain ; Histograms ; Image color analysis ; Image representation ; information projection ; Lattices ; Learning ; Pattern recognition. Digital image processing. Computational geometry ; Projection ; Prototypes ; Shape ; statistical modeling ; Statistics ; Studies ; Support vector machines ; Surface layer ; Texture ; visual learning</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2012-07, Vol.34 (7), p.1354-1367</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-900cd676affd1d2b51637425a93090feca787e27bbb521fa8447202fa7e96ca63</citedby><cites>FETCH-LOGICAL-c446t-900cd676affd1d2b51637425a93090feca787e27bbb521fa8447202fa7e96ca63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095562$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095562$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26403821$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22144518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Si, Zhangzhang</creatorcontrib><creatorcontrib>Zhu, Song-Chun</creatorcontrib><title>Learning Hybrid Image Templates (HIT) by Information Projection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper presents a novel framework for learning a generative image representation-the hybrid image template (HIT) from a small number (i.e., 3 \sim 20) of image examples. Each learned template is composed of, typically, 50 \sim 500 image patches whose geometric attributes (location, scale, orientation) may adapt in a local neighborhood for deformation, and whose appearances are characterized, respectively, by four types of descriptors: local sketch (edge or bar), texture gradients with orientations, flatness regions, and colors. These heterogeneous patches are automatically ranked and selected from a large pool according to their information gains using an information projection framework. Intuitively, a patch has a higher information gain if 1) its feature statistics are consistent within the training examples and are distinctive from the statistics of negative examples (i.e., generic images or examples from other categories); and 2) its feature statistics have less intraclass variations. The learning process pursues the most informative (for either generative or discriminative purpose) patches one at a time and stops when the information gain is within statistical fluctuation. The template is associated with a well-normalized probability model that integrates the heterogeneous feature statistics. This automated feature selection procedure allows our algorithm to scale up to a wide range of image categories, from those with regular shapes to those with stochastic texture. The learned representation captures the intrinsic characteristics of the object or scene categories. We evaluate the hybrid image templates on several public benchmarks, and demonstrate classification performances on par with state-of-the-art methods like HoG+SVM, and when small training sample sizes are used, the proposed system shows a clear advantage.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Categories</subject><subject>Computer science; control theory; systems</subject><subject>Deformable models</subject><subject>deformable templates</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image representation</subject><subject>information projection</subject><subject>Lattices</subject><subject>Learning</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Projection</subject><subject>Prototypes</subject><subject>Shape</subject><subject>statistical modeling</subject><subject>Statistics</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Surface layer</subject><subject>Texture</subject><subject>visual learning</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1rGzEQBmBRWho36bWXQlkoheSwrmb0tTqVENp6wSU5uOdFqx2FNfvhSvbB_767tZtCLzlJoEfDzLyMvQO-BOD28-bh9ke5RA6wRDQv2AKssLlQwr5kCw4a86LA4oK9SWnLOUjFxWt2gQhSKigW7MuaXBza4TFbHevYNlnZu0fKNtTvOrenlF2vys1NVh-zcghj7N2-HYfsIY5b8vP1ir0Krkv09nxesp_fvm7uVvn6_nt5d7vOvZR6n1vOfaONdiE00GCtQAsjUTkruOWBvDOFITR1XSuE4AopDXIMzpDV3mlxya5PdXdx_HWgtK_6NnnqOjfQeEgVGAAllLLwPOWiQKEA56of_6Pb8RCHaZBJoZp6UtZOanlSPo4pRQrVLra9i8cJVXMK1Z8UqjmFakph-vDhXPZQ99Q88b9rn8CnM3DJuy5EN_g2_XNazj3Oo7w_uZaInp41t0ppFL8BkWOUuQ</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Si, Zhangzhang</creator><creator>Zhu, Song-Chun</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20120701</creationdate><title>Learning Hybrid Image Templates (HIT) by Information Projection</title><author>Si, Zhangzhang ; Zhu, Song-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-900cd676affd1d2b51637425a93090feca787e27bbb521fa8447202fa7e96ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Categories</topic><topic>Computer science; control theory; systems</topic><topic>Deformable models</topic><topic>deformable templates</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image representation</topic><topic>information projection</topic><topic>Lattices</topic><topic>Learning</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Projection</topic><topic>Prototypes</topic><topic>Shape</topic><topic>statistical modeling</topic><topic>Statistics</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Surface layer</topic><topic>Texture</topic><topic>visual learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Zhangzhang</creatorcontrib><creatorcontrib>Zhu, Song-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Si, Zhangzhang</au><au>Zhu, Song-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Hybrid Image Templates (HIT) by Information Projection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>34</volume><issue>7</issue><spage>1354</spage><epage>1367</epage><pages>1354-1367</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper presents a novel framework for learning a generative image representation-the hybrid image template (HIT) from a small number (i.e., 3 \sim 20) of image examples. Each learned template is composed of, typically, 50 \sim 500 image patches whose geometric attributes (location, scale, orientation) may adapt in a local neighborhood for deformation, and whose appearances are characterized, respectively, by four types of descriptors: local sketch (edge or bar), texture gradients with orientations, flatness regions, and colors. These heterogeneous patches are automatically ranked and selected from a large pool according to their information gains using an information projection framework. Intuitively, a patch has a higher information gain if 1) its feature statistics are consistent within the training examples and are distinctive from the statistics of negative examples (i.e., generic images or examples from other categories); and 2) its feature statistics have less intraclass variations. The learning process pursues the most informative (for either generative or discriminative purpose) patches one at a time and stops when the information gain is within statistical fluctuation. The template is associated with a well-normalized probability model that integrates the heterogeneous feature statistics. This automated feature selection procedure allows our algorithm to scale up to a wide range of image categories, from those with regular shapes to those with stochastic texture. The learned representation captures the intrinsic characteristics of the object or scene categories. We evaluate the hybrid image templates on several public benchmarks, and demonstrate classification performances on par with state-of-the-art methods like HoG+SVM, and when small training sample sizes are used, the proposed system shows a clear advantage.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22144518</pmid><doi>10.1109/TPAMI.2011.227</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2012-07, Vol.34 (7), p.1354-1367
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_crossref_primary_10_1109_TPAMI_2011_227
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Categories
Computer science
control theory
systems
Deformable models
deformable templates
Exact sciences and technology
Gain
Histograms
Image color analysis
Image representation
information projection
Lattices
Learning
Pattern recognition. Digital image processing. Computational geometry
Projection
Prototypes
Shape
statistical modeling
Statistics
Studies
Support vector machines
Surface layer
Texture
visual learning
title Learning Hybrid Image Templates (HIT) by Information Projection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Hybrid%20Image%20Templates%20(HIT)%20by%20Information%20Projection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Si,%20Zhangzhang&rft.date=2012-07-01&rft.volume=34&rft.issue=7&rft.spage=1354&rft.epage=1367&rft.pages=1354-1367&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2011.227&rft_dat=%3Cproquest_RIE%3E1038235126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1025787599&rft_id=info:pmid/22144518&rft_ieee_id=6095562&rfr_iscdi=true