A Multimedia Retrieval Framework Based on Semi-Supervised Ranking and Relevance Feedback
We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2012-04, Vol.34 (4), p.723-742 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 742 |
---|---|
container_issue | 4 |
container_start_page | 723 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 34 |
creator | Yang, Yi Nie, Feiping Xu, Dong Luo, Jiebo Zhuang, Yueting Pan, Yunhe |
description | We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency. |
doi_str_mv | 10.1109/TPAMI.2011.170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TPAMI_2011_170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5989829</ieee_id><sourcerecordid>2591545331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-3f9b6bcf563b2c75a71357818cbae12306638eb1647d680ac46cbaba563841fd3</originalsourceid><addsrcrecordid>eNpdkN9rFDEQx4NU7Fl97YtQloLgy56ZJJudPF6Lp4WWlrZC35ZsdlbS2x_X5Lbif2_OOyv4NMPMZ74MH8aOgc8BuPl8f7O4upgLDjCHkr9iMzDS5LKQ5oDNOGiRIwo8ZG9jfOQcVMHlG3YoAJXSQs3YwyK7mrqN76nxNrulTfD0bLtsGWxPP8ewys5spCYbh-yOep_fTWsKz347urXDyg8_Mjuknrp0NjjKlkRNbd3qHXvd2i7S-309Yt-XX-7Pv-WX118vzheXuZOl2OSyNbWuXVtoWQtXFrYEWZQI6GpLICTXWiLVoFXZaOTWKZ02tU08KmgbecQ-7XLXYXyaKG6q3kdHXWcHGqdYAQdEDQYxoaf_oY_jFIb0XWWEUCh0qRI030EujDEGaqt18L0Nv1JStVVe_VFebZVXSXk6ONmnTnWy-IL_dZyAj3vARme7NiRPPv7jNIcCi-17H3acJ6KXdWHQoDDyN1OekHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922482674</pqid></control><display><type>article</type><title>A Multimedia Retrieval Framework Based on Semi-Supervised Ranking and Relevance Feedback</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Yi ; Nie, Feiping ; Xu, Dong ; Luo, Jiebo ; Zhuang, Yueting ; Pan, Yunhe</creator><creatorcontrib>Yang, Yi ; Nie, Feiping ; Xu, Dong ; Luo, Jiebo ; Zhuang, Yueting ; Pan, Yunhe</creatorcontrib><description>We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2011.170</identifier><identifier>PMID: 21844624</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>3D motion data retrieval ; Algorithm design and analysis ; Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Content-based multimedia retrieval ; cross-media retrieval ; Data models ; Databases, Factual ; Exact sciences and technology ; Humans ; Image Enhancement - methods ; Image retrieval ; Information Storage and Retrieval - methods ; Information systems. Data bases ; Learning and adaptive systems ; Manifolds ; Memory organisation. Data processing ; Multimedia - standards ; Multimedia communication ; Multimedia databases ; Pattern Recognition, Automated ; Pattern recognition. Digital image processing. Computational geometry ; Radio frequency ; ranking algorithm ; relevance feedback ; semi-supervised learning ; Software ; Studies</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2012-04, Vol.34 (4), p.723-742</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-3f9b6bcf563b2c75a71357818cbae12306638eb1647d680ac46cbaba563841fd3</citedby><cites>FETCH-LOGICAL-c372t-3f9b6bcf563b2c75a71357818cbae12306638eb1647d680ac46cbaba563841fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5989829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5989829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26015858$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21844624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Luo, Jiebo</creatorcontrib><creatorcontrib>Zhuang, Yueting</creatorcontrib><creatorcontrib>Pan, Yunhe</creatorcontrib><title>A Multimedia Retrieval Framework Based on Semi-Supervised Ranking and Relevance Feedback</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.</description><subject>3D motion data retrieval</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Content-based multimedia retrieval</subject><subject>cross-media retrieval</subject><subject>Data models</subject><subject>Databases, Factual</subject><subject>Exact sciences and technology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image retrieval</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information systems. Data bases</subject><subject>Learning and adaptive systems</subject><subject>Manifolds</subject><subject>Memory organisation. Data processing</subject><subject>Multimedia - standards</subject><subject>Multimedia communication</subject><subject>Multimedia databases</subject><subject>Pattern Recognition, Automated</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Radio frequency</subject><subject>ranking algorithm</subject><subject>relevance feedback</subject><subject>semi-supervised learning</subject><subject>Software</subject><subject>Studies</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkN9rFDEQx4NU7Fl97YtQloLgy56ZJJudPF6Lp4WWlrZC35ZsdlbS2x_X5Lbif2_OOyv4NMPMZ74MH8aOgc8BuPl8f7O4upgLDjCHkr9iMzDS5LKQ5oDNOGiRIwo8ZG9jfOQcVMHlG3YoAJXSQs3YwyK7mrqN76nxNrulTfD0bLtsGWxPP8ewys5spCYbh-yOep_fTWsKz347urXDyg8_Mjuknrp0NjjKlkRNbd3qHXvd2i7S-309Yt-XX-7Pv-WX118vzheXuZOl2OSyNbWuXVtoWQtXFrYEWZQI6GpLICTXWiLVoFXZaOTWKZ02tU08KmgbecQ-7XLXYXyaKG6q3kdHXWcHGqdYAQdEDQYxoaf_oY_jFIb0XWWEUCh0qRI030EujDEGaqt18L0Nv1JStVVe_VFebZVXSXk6ONmnTnWy-IL_dZyAj3vARme7NiRPPv7jNIcCi-17H3acJ6KXdWHQoDDyN1OekHA</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Yang, Yi</creator><creator>Nie, Feiping</creator><creator>Xu, Dong</creator><creator>Luo, Jiebo</creator><creator>Zhuang, Yueting</creator><creator>Pan, Yunhe</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>A Multimedia Retrieval Framework Based on Semi-Supervised Ranking and Relevance Feedback</title><author>Yang, Yi ; Nie, Feiping ; Xu, Dong ; Luo, Jiebo ; Zhuang, Yueting ; Pan, Yunhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-3f9b6bcf563b2c75a71357818cbae12306638eb1647d680ac46cbaba563841fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3D motion data retrieval</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Content-based multimedia retrieval</topic><topic>cross-media retrieval</topic><topic>Data models</topic><topic>Databases, Factual</topic><topic>Exact sciences and technology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image retrieval</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information systems. Data bases</topic><topic>Learning and adaptive systems</topic><topic>Manifolds</topic><topic>Memory organisation. Data processing</topic><topic>Multimedia - standards</topic><topic>Multimedia communication</topic><topic>Multimedia databases</topic><topic>Pattern Recognition, Automated</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Radio frequency</topic><topic>ranking algorithm</topic><topic>relevance feedback</topic><topic>semi-supervised learning</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Luo, Jiebo</creatorcontrib><creatorcontrib>Zhuang, Yueting</creatorcontrib><creatorcontrib>Pan, Yunhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Yi</au><au>Nie, Feiping</au><au>Xu, Dong</au><au>Luo, Jiebo</au><au>Zhuang, Yueting</au><au>Pan, Yunhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multimedia Retrieval Framework Based on Semi-Supervised Ranking and Relevance Feedback</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>34</volume><issue>4</issue><spage>723</spage><epage>742</epage><pages>723-742</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>21844624</pmid><doi>10.1109/TPAMI.2011.170</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2012-04, Vol.34 (4), p.723-742 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TPAMI_2011_170 |
source | IEEE Electronic Library (IEL) |
subjects | 3D motion data retrieval Algorithm design and analysis Algorithms Applied sciences Artificial intelligence Computer science control theory systems Computer systems and distributed systems. User interface Content-based multimedia retrieval cross-media retrieval Data models Databases, Factual Exact sciences and technology Humans Image Enhancement - methods Image retrieval Information Storage and Retrieval - methods Information systems. Data bases Learning and adaptive systems Manifolds Memory organisation. Data processing Multimedia - standards Multimedia communication Multimedia databases Pattern Recognition, Automated Pattern recognition. Digital image processing. Computational geometry Radio frequency ranking algorithm relevance feedback semi-supervised learning Software Studies |
title | A Multimedia Retrieval Framework Based on Semi-Supervised Ranking and Relevance Feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multimedia%20Retrieval%20Framework%20Based%20on%20Semi-Supervised%20Ranking%20and%20Relevance%20Feedback&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Yang,%20Yi&rft.date=2012-04-01&rft.volume=34&rft.issue=4&rft.spage=723&rft.epage=742&rft.pages=723-742&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2011.170&rft_dat=%3Cproquest_RIE%3E2591545331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922482674&rft_id=info:pmid/21844624&rft_ieee_id=5989829&rfr_iscdi=true |