Learning to Detect a Salient Object

In this paper, we study the salient object detection problem for images. We formulate this problem as a binary labeling task where we separate the salient object from the background. We propose a set of novel features, including multiscale contrast, center-surround histogram, and color spatial distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2011-02, Vol.33 (2), p.353-367
Hauptverfasser: Liu, Tie, Yuan, Zejian, Sun, Jian, Wang, Jingdong, Zheng, Nanning, Tang, Xiaoou, Shum, Heung-Yeung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the salient object detection problem for images. We formulate this problem as a binary labeling task where we separate the salient object from the background. We propose a set of novel features, including multiscale contrast, center-surround histogram, and color spatial distribution, to describe a salient object locally, regionally, and globally. A conditional random field is learned to effectively combine these features for salient object detection. Further, we extend the proposed approach to detect a salient object from sequential images by introducing the dynamic salient features. We collected a large image database containing tens of thousands of carefully labeled images by multiple users and a video segment database, and conducted a set of experiments over them to demonstrate the effectiveness of the proposed approach.
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2010.70