An Optimal Global Nearest Neighbor Metric

A quadratic metric d AO (X, Y) =[(X - Y) T A O (X - Y)] 1/2 is proposed which minimizes the mean-squared error between the nearest neighbor asymptotic risk and the finite sample risk. Under linearity assumptions, a heuristic argument is given which indicates that this metric produces lower mean-squa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1984-05, Vol.PAMI-6 (3), p.314-318
Hauptverfasser: Fukunaga, Keinosuke, Flick, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A quadratic metric d AO (X, Y) =[(X - Y) T A O (X - Y)] 1/2 is proposed which minimizes the mean-squared error between the nearest neighbor asymptotic risk and the finite sample risk. Under linearity assumptions, a heuristic argument is given which indicates that this metric produces lower mean-squared error than the Euclidean metric. A nonparametric estimate of Ao is developed. If samples appear to come from a Gaussian mixture, an alternative, parametrically directed distance measure is suggested for nearness decisions within a limited region of space. Examples of some two-class Gaussian mixture distributions are included.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.1984.4767523