Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors
Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on haptics 2016-04, Vol.9 (2), p.207-220 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 220 |
---|---|
container_issue | 2 |
container_start_page | 207 |
container_title | IEEE transactions on haptics |
container_volume | 9 |
creator | Spiers, Adam J. Liarokapis, Minas V. Calli, Berk Dollar, Aaron M. |
description | Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads. |
doi_str_mv | 10.1109/TOH.2016.2521378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TOH_2016_2521378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7390277</ieee_id><sourcerecordid>1825523163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-3d1e343fadd90440b116d46084e32e9d80ff369b2dd65f77ef72d9733eb241d73</originalsourceid><addsrcrecordid>eNqF0c9LKzEQB_AgT7RW78IDWfDiZWsyyebH8VHUCkLB1vOS3cz6Ura7NdlF_e_d2urBi6fA5DMDM19CzhmdMEbN9XI-mwBlcgIZMK70ARkBB5MKmrE_ZMQMNykTDI7JSYwrSiUoI47IMUgNRlMxIrjwzXON6V2wcZPMixWWXTKtbYy-8qXtfNsktnHJLdquD5jcvHXBlp_lV9_9TxZ-vakxeWyLtktmg4yffLk1Q32BTWxDPCWHla0jnu3fMXm6vVlOZ-nD_O5--u8hLYU0XcodQy54ZZ0zVAhaMCadkFQL5IDGaVpVXJoCnJNZpRRWCpxRnGMBgjnFx-RqN3cT2pceY5evfSyxrm2DbR9zpiHLgDPJf6fKmEwC1XKglz_oqu1DMyyyVVoboYbrjwndqTK0MQas8k3waxvec0bzbVr5kFa-TSvfpzW0XOwH98Ua3XfDVzwD-LsDHhG_vxU3FJTiH-Bnl0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798894721</pqid></control><display><type>article</type><title>Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Spiers, Adam J. ; Liarokapis, Minas V. ; Calli, Berk ; Dollar, Aaron M.</creator><creatorcontrib>Spiers, Adam J. ; Liarokapis, Minas V. ; Calli, Berk ; Dollar, Aaron M.</creatorcontrib><description>Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.</description><identifier>ISSN: 1939-1412</identifier><identifier>EISSN: 2329-4051</identifier><identifier>DOI: 10.1109/TOH.2016.2521378</identifier><identifier>PMID: 26829804</identifier><identifier>CODEN: ITHEBX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive Grasping ; Animals ; Biomechanical Phenomena - physiology ; EPS ; Equipment Design ; Feature extraction ; Fingers ; Fingers - anatomy & histology ; Fingers - physiology ; Grasping ; Hand - anatomy & histology ; Hand - physiology ; Hand Strength - physiology ; Haptics Applications ; Humans ; Machine Learning ; Object Classification ; Object Feature Extraction ; Object recognition ; Robot sensing systems ; Robotics ; Robotics - methods ; Robots ; Sensors ; Tactile ; Tactile Sensing ; Thumb ; Touch - physiology ; Underactuated Robot Hands</subject><ispartof>IEEE transactions on haptics, 2016-04, Vol.9 (2), p.207-220</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-3d1e343fadd90440b116d46084e32e9d80ff369b2dd65f77ef72d9733eb241d73</citedby><cites>FETCH-LOGICAL-c469t-3d1e343fadd90440b116d46084e32e9d80ff369b2dd65f77ef72d9733eb241d73</cites><orcidid>0000-0002-3221-1000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7390277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7390277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26829804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spiers, Adam J.</creatorcontrib><creatorcontrib>Liarokapis, Minas V.</creatorcontrib><creatorcontrib>Calli, Berk</creatorcontrib><creatorcontrib>Dollar, Aaron M.</creatorcontrib><title>Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors</title><title>IEEE transactions on haptics</title><addtitle>TOH</addtitle><addtitle>IEEE Trans Haptics</addtitle><description>Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.</description><subject>Adaptive Grasping</subject><subject>Animals</subject><subject>Biomechanical Phenomena - physiology</subject><subject>EPS</subject><subject>Equipment Design</subject><subject>Feature extraction</subject><subject>Fingers</subject><subject>Fingers - anatomy & histology</subject><subject>Fingers - physiology</subject><subject>Grasping</subject><subject>Hand - anatomy & histology</subject><subject>Hand - physiology</subject><subject>Hand Strength - physiology</subject><subject>Haptics Applications</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Object Classification</subject><subject>Object Feature Extraction</subject><subject>Object recognition</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robotics - methods</subject><subject>Robots</subject><subject>Sensors</subject><subject>Tactile</subject><subject>Tactile Sensing</subject><subject>Thumb</subject><subject>Touch - physiology</subject><subject>Underactuated Robot Hands</subject><issn>1939-1412</issn><issn>2329-4051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9LKzEQB_AgT7RW78IDWfDiZWsyyebH8VHUCkLB1vOS3cz6Ura7NdlF_e_d2urBi6fA5DMDM19CzhmdMEbN9XI-mwBlcgIZMK70ARkBB5MKmrE_ZMQMNykTDI7JSYwrSiUoI47IMUgNRlMxIrjwzXON6V2wcZPMixWWXTKtbYy-8qXtfNsktnHJLdquD5jcvHXBlp_lV9_9TxZ-vakxeWyLtktmg4yffLk1Q32BTWxDPCWHla0jnu3fMXm6vVlOZ-nD_O5--u8hLYU0XcodQy54ZZ0zVAhaMCadkFQL5IDGaVpVXJoCnJNZpRRWCpxRnGMBgjnFx-RqN3cT2pceY5evfSyxrm2DbR9zpiHLgDPJf6fKmEwC1XKglz_oqu1DMyyyVVoboYbrjwndqTK0MQas8k3waxvec0bzbVr5kFa-TSvfpzW0XOwH98Ua3XfDVzwD-LsDHhG_vxU3FJTiH-Bnl0I</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Spiers, Adam J.</creator><creator>Liarokapis, Minas V.</creator><creator>Calli, Berk</creator><creator>Dollar, Aaron M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3221-1000</orcidid></search><sort><creationdate>20160401</creationdate><title>Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors</title><author>Spiers, Adam J. ; Liarokapis, Minas V. ; Calli, Berk ; Dollar, Aaron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-3d1e343fadd90440b116d46084e32e9d80ff369b2dd65f77ef72d9733eb241d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive Grasping</topic><topic>Animals</topic><topic>Biomechanical Phenomena - physiology</topic><topic>EPS</topic><topic>Equipment Design</topic><topic>Feature extraction</topic><topic>Fingers</topic><topic>Fingers - anatomy & histology</topic><topic>Fingers - physiology</topic><topic>Grasping</topic><topic>Hand - anatomy & histology</topic><topic>Hand - physiology</topic><topic>Hand Strength - physiology</topic><topic>Haptics Applications</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Object Classification</topic><topic>Object Feature Extraction</topic><topic>Object recognition</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robotics - methods</topic><topic>Robots</topic><topic>Sensors</topic><topic>Tactile</topic><topic>Tactile Sensing</topic><topic>Thumb</topic><topic>Touch - physiology</topic><topic>Underactuated Robot Hands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiers, Adam J.</creatorcontrib><creatorcontrib>Liarokapis, Minas V.</creatorcontrib><creatorcontrib>Calli, Berk</creatorcontrib><creatorcontrib>Dollar, Aaron M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on haptics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spiers, Adam J.</au><au>Liarokapis, Minas V.</au><au>Calli, Berk</au><au>Dollar, Aaron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors</atitle><jtitle>IEEE transactions on haptics</jtitle><stitle>TOH</stitle><addtitle>IEEE Trans Haptics</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>9</volume><issue>2</issue><spage>207</spage><epage>220</epage><pages>207-220</pages><issn>1939-1412</issn><eissn>2329-4051</eissn><coden>ITHEBX</coden><abstract>Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26829804</pmid><doi>10.1109/TOH.2016.2521378</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3221-1000</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1412 |
ispartof | IEEE transactions on haptics, 2016-04, Vol.9 (2), p.207-220 |
issn | 1939-1412 2329-4051 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TOH_2016_2521378 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive Grasping Animals Biomechanical Phenomena - physiology EPS Equipment Design Feature extraction Fingers Fingers - anatomy & histology Fingers - physiology Grasping Hand - anatomy & histology Hand - physiology Hand Strength - physiology Haptics Applications Humans Machine Learning Object Classification Object Feature Extraction Object recognition Robot sensing systems Robotics Robotics - methods Robots Sensors Tactile Tactile Sensing Thumb Touch - physiology Underactuated Robot Hands |
title | Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Grasp%20Object%20Classification%20and%20Feature%20Extraction%20with%20Simple%20Robot%20Hands%20and%20Tactile%20Sensors&rft.jtitle=IEEE%20transactions%20on%20haptics&rft.au=Spiers,%20Adam%20J.&rft.date=2016-04-01&rft.volume=9&rft.issue=2&rft.spage=207&rft.epage=220&rft.pages=207-220&rft.issn=1939-1412&rft.eissn=2329-4051&rft.coden=ITHEBX&rft_id=info:doi/10.1109/TOH.2016.2521378&rft_dat=%3Cproquest_RIE%3E1825523163%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798894721&rft_id=info:pmid/26829804&rft_ieee_id=7390277&rfr_iscdi=true |