Radiation Effects in Quanta Image Sensors

The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2025-01, p.1-1
Hauptverfasser: Krynski, Joanna, Neyret, Alexandre, Bernard, Vivian, Lalucaa, Valerian, Roch, Alexandre Le, Materne, Alex, Virmontois, Cedric, Goiffon, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on nuclear science
container_volume
creator Krynski, Joanna
Neyret, Alexandre
Bernard, Vivian
Lalucaa, Valerian
Roch, Alexandre Le
Materne, Alex
Virmontois, Cedric
Goiffon, Vincent
description The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging (
doi_str_mv 10.1109/TNS.2025.3531409
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2025_3531409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10845858</ieee_id><sourcerecordid>10_1109_TNS_2025_3531409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628-5ec3ee3d42728d69f6e1382cc4582035161024cc94cd82a1e6fc109ad5c4866a3</originalsourceid><addsrcrecordid>eNpNjzFPwzAQhS0EEqGwMzBkZUjx2T73PKKqlEoVCJrdspwzCqIJisPAvydVOzA9Pem9d_cJcQtyDiDdQ_2ymyupcK5Rg5HuTBSASBXggs5FISVQ5Yxzl-Iq58_JGpRYiPv30LRhbPuuXKXEccxl25VvP6EbQ7nZhw8ud9zlfsjX4iKFr8w3J52J-mlVL5-r7et6s3zcVtEqqpCjZtaNUQtFjXXJMmhSMRokJTWCBalMjM7EhlQAtilO74cGoyFrg54JeZyNQ5_zwMl_D-0-DL8epD-Q-onUH0j9iXSq3B0rLTP_i9N0E0n_ARC8TbI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radiation Effects in Quanta Image Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Krynski, Joanna ; Neyret, Alexandre ; Bernard, Vivian ; Lalucaa, Valerian ; Roch, Alexandre Le ; Materne, Alex ; Virmontois, Cedric ; Goiffon, Vincent</creator><creatorcontrib>Krynski, Joanna ; Neyret, Alexandre ; Bernard, Vivian ; Lalucaa, Valerian ; Roch, Alexandre Le ; Materne, Alex ; Virmontois, Cedric ; Goiffon, Vincent</creatorcontrib><description>The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging (&lt;10 photons/s per pixel per frame) due to its extremely low dark current and deep sub-electron read noise, thus enabling single photoelectron resolution. These characteristics are further coupled with the benefits of CMOS technology processing, such as low power consumption and array sizes on the order of megapixels exhibiting good pixel uniformity. With growing interest in the use of these sensors for space missions, the vulnerability of QIS pixels to radiation is still an open question. To this end, we explore the effects of proton and neutron irradiation on a commercially available QIS camera up to a fluence of 2 × 10 11 particles/cm 2 . Results show that dark current changes in the QIS are similar to those in conventional, non-photoelectron resolving CMOS image sensors (CIS) under non-ionizing radiation. The continued applicability of the universal damage factor for displacement damage in silicon to this new technology, as well as to sub-zero temperatures and at various annealing times is demonstrated. An extension of the empirical model on dark current increase and random telegraph signal amplitudes to low temperatures is also investigated. Total-ionizing dose (TID) effects related to the sensor noise are also observed in the cameras irradiated with protons: column noise and fixed pattern noise are found to increase with proton fluence. We present histograms of the quantization of signal in dark and light conditions, demonstrating the QIS' continued ability to count photons after the highest fluence. However, radiation-induced increases to noise will contribute to the mistaking of dark electrons as photons. Provided that the integration time is small enough to limit the collection of carriers generated by bulk defects in the photodiode, TID effects in the readout circuitry are the main obstacles to accurate photon counting.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2025.3531409</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active pixel sensor (APS) ; Cameras ; CMOS image sensor (CIS) ; Dark current ; dark current distribution model ; displacement damage dose (DDD) ; Histograms ; Noise ; Photonics ; Protons ; quanta image sensor (QIS) ; Radiation effects ; Sensors ; single-photon imaging ; sub-electron read noise ; Temperature measurement ; Temperature sensors ; total-ionizing dose (TID)</subject><ispartof>IEEE transactions on nuclear science, 2025-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8625-8090 ; 0000-0001-5024-0115 ; 0000-0003-4083-5363 ; 0000-0002-9348-1565 ; 0009-0009-7843-3782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10845858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10845858$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krynski, Joanna</creatorcontrib><creatorcontrib>Neyret, Alexandre</creatorcontrib><creatorcontrib>Bernard, Vivian</creatorcontrib><creatorcontrib>Lalucaa, Valerian</creatorcontrib><creatorcontrib>Roch, Alexandre Le</creatorcontrib><creatorcontrib>Materne, Alex</creatorcontrib><creatorcontrib>Virmontois, Cedric</creatorcontrib><creatorcontrib>Goiffon, Vincent</creatorcontrib><title>Radiation Effects in Quanta Image Sensors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging (&lt;10 photons/s per pixel per frame) due to its extremely low dark current and deep sub-electron read noise, thus enabling single photoelectron resolution. These characteristics are further coupled with the benefits of CMOS technology processing, such as low power consumption and array sizes on the order of megapixels exhibiting good pixel uniformity. With growing interest in the use of these sensors for space missions, the vulnerability of QIS pixels to radiation is still an open question. To this end, we explore the effects of proton and neutron irradiation on a commercially available QIS camera up to a fluence of 2 × 10 11 particles/cm 2 . Results show that dark current changes in the QIS are similar to those in conventional, non-photoelectron resolving CMOS image sensors (CIS) under non-ionizing radiation. The continued applicability of the universal damage factor for displacement damage in silicon to this new technology, as well as to sub-zero temperatures and at various annealing times is demonstrated. An extension of the empirical model on dark current increase and random telegraph signal amplitudes to low temperatures is also investigated. Total-ionizing dose (TID) effects related to the sensor noise are also observed in the cameras irradiated with protons: column noise and fixed pattern noise are found to increase with proton fluence. We present histograms of the quantization of signal in dark and light conditions, demonstrating the QIS' continued ability to count photons after the highest fluence. However, radiation-induced increases to noise will contribute to the mistaking of dark electrons as photons. Provided that the integration time is small enough to limit the collection of carriers generated by bulk defects in the photodiode, TID effects in the readout circuitry are the main obstacles to accurate photon counting.</description><subject>Active pixel sensor (APS)</subject><subject>Cameras</subject><subject>CMOS image sensor (CIS)</subject><subject>Dark current</subject><subject>dark current distribution model</subject><subject>displacement damage dose (DDD)</subject><subject>Histograms</subject><subject>Noise</subject><subject>Photonics</subject><subject>Protons</subject><subject>quanta image sensor (QIS)</subject><subject>Radiation effects</subject><subject>Sensors</subject><subject>single-photon imaging</subject><subject>sub-electron read noise</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>total-ionizing dose (TID)</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNjzFPwzAQhS0EEqGwMzBkZUjx2T73PKKqlEoVCJrdspwzCqIJisPAvydVOzA9Pem9d_cJcQtyDiDdQ_2ymyupcK5Rg5HuTBSASBXggs5FISVQ5Yxzl-Iq58_JGpRYiPv30LRhbPuuXKXEccxl25VvP6EbQ7nZhw8ud9zlfsjX4iKFr8w3J52J-mlVL5-r7et6s3zcVtEqqpCjZtaNUQtFjXXJMmhSMRokJTWCBalMjM7EhlQAtilO74cGoyFrg54JeZyNQ5_zwMl_D-0-DL8epD-Q-onUH0j9iXSq3B0rLTP_i9N0E0n_ARC8TbI</recordid><startdate>20250117</startdate><enddate>20250117</enddate><creator>Krynski, Joanna</creator><creator>Neyret, Alexandre</creator><creator>Bernard, Vivian</creator><creator>Lalucaa, Valerian</creator><creator>Roch, Alexandre Le</creator><creator>Materne, Alex</creator><creator>Virmontois, Cedric</creator><creator>Goiffon, Vincent</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8625-8090</orcidid><orcidid>https://orcid.org/0000-0001-5024-0115</orcidid><orcidid>https://orcid.org/0000-0003-4083-5363</orcidid><orcidid>https://orcid.org/0000-0002-9348-1565</orcidid><orcidid>https://orcid.org/0009-0009-7843-3782</orcidid></search><sort><creationdate>20250117</creationdate><title>Radiation Effects in Quanta Image Sensors</title><author>Krynski, Joanna ; Neyret, Alexandre ; Bernard, Vivian ; Lalucaa, Valerian ; Roch, Alexandre Le ; Materne, Alex ; Virmontois, Cedric ; Goiffon, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628-5ec3ee3d42728d69f6e1382cc4582035161024cc94cd82a1e6fc109ad5c4866a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Active pixel sensor (APS)</topic><topic>Cameras</topic><topic>CMOS image sensor (CIS)</topic><topic>Dark current</topic><topic>dark current distribution model</topic><topic>displacement damage dose (DDD)</topic><topic>Histograms</topic><topic>Noise</topic><topic>Photonics</topic><topic>Protons</topic><topic>quanta image sensor (QIS)</topic><topic>Radiation effects</topic><topic>Sensors</topic><topic>single-photon imaging</topic><topic>sub-electron read noise</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>total-ionizing dose (TID)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krynski, Joanna</creatorcontrib><creatorcontrib>Neyret, Alexandre</creatorcontrib><creatorcontrib>Bernard, Vivian</creatorcontrib><creatorcontrib>Lalucaa, Valerian</creatorcontrib><creatorcontrib>Roch, Alexandre Le</creatorcontrib><creatorcontrib>Materne, Alex</creatorcontrib><creatorcontrib>Virmontois, Cedric</creatorcontrib><creatorcontrib>Goiffon, Vincent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krynski, Joanna</au><au>Neyret, Alexandre</au><au>Bernard, Vivian</au><au>Lalucaa, Valerian</au><au>Roch, Alexandre Le</au><au>Materne, Alex</au><au>Virmontois, Cedric</au><au>Goiffon, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation Effects in Quanta Image Sensors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2025-01-17</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging (&lt;10 photons/s per pixel per frame) due to its extremely low dark current and deep sub-electron read noise, thus enabling single photoelectron resolution. These characteristics are further coupled with the benefits of CMOS technology processing, such as low power consumption and array sizes on the order of megapixels exhibiting good pixel uniformity. With growing interest in the use of these sensors for space missions, the vulnerability of QIS pixels to radiation is still an open question. To this end, we explore the effects of proton and neutron irradiation on a commercially available QIS camera up to a fluence of 2 × 10 11 particles/cm 2 . Results show that dark current changes in the QIS are similar to those in conventional, non-photoelectron resolving CMOS image sensors (CIS) under non-ionizing radiation. The continued applicability of the universal damage factor for displacement damage in silicon to this new technology, as well as to sub-zero temperatures and at various annealing times is demonstrated. An extension of the empirical model on dark current increase and random telegraph signal amplitudes to low temperatures is also investigated. Total-ionizing dose (TID) effects related to the sensor noise are also observed in the cameras irradiated with protons: column noise and fixed pattern noise are found to increase with proton fluence. We present histograms of the quantization of signal in dark and light conditions, demonstrating the QIS' continued ability to count photons after the highest fluence. However, radiation-induced increases to noise will contribute to the mistaking of dark electrons as photons. Provided that the integration time is small enough to limit the collection of carriers generated by bulk defects in the photodiode, TID effects in the readout circuitry are the main obstacles to accurate photon counting.</abstract><pub>IEEE</pub><doi>10.1109/TNS.2025.3531409</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8625-8090</orcidid><orcidid>https://orcid.org/0000-0001-5024-0115</orcidid><orcidid>https://orcid.org/0000-0003-4083-5363</orcidid><orcidid>https://orcid.org/0000-0002-9348-1565</orcidid><orcidid>https://orcid.org/0009-0009-7843-3782</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2025-01, p.1-1
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2025_3531409
source IEEE Electronic Library (IEL)
subjects Active pixel sensor (APS)
Cameras
CMOS image sensor (CIS)
Dark current
dark current distribution model
displacement damage dose (DDD)
Histograms
Noise
Photonics
Protons
quanta image sensor (QIS)
Radiation effects
Sensors
single-photon imaging
sub-electron read noise
Temperature measurement
Temperature sensors
total-ionizing dose (TID)
title Radiation Effects in Quanta Image Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20Effects%20in%20Quanta%20Image%20Sensors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Krynski,%20Joanna&rft.date=2025-01-17&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2025.3531409&rft_dat=%3Ccrossref_RIE%3E10_1109_TNS_2025_3531409%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10845858&rfr_iscdi=true