Radiation Effects in Quanta Image Sensors
The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging (
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2025-01, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on nuclear science |
container_volume | |
creator | Krynski, Joanna Neyret, Alexandre Bernard, Vivian Lalucaa, Valerian Roch, Alexandre Le Materne, Alex Virmontois, Cedric Goiffon, Vincent |
description | The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging ( |
doi_str_mv | 10.1109/TNS.2025.3531409 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2025_3531409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10845858</ieee_id><sourcerecordid>10_1109_TNS_2025_3531409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628-5ec3ee3d42728d69f6e1382cc4582035161024cc94cd82a1e6fc109ad5c4866a3</originalsourceid><addsrcrecordid>eNpNjzFPwzAQhS0EEqGwMzBkZUjx2T73PKKqlEoVCJrdspwzCqIJisPAvydVOzA9Pem9d_cJcQtyDiDdQ_2ymyupcK5Rg5HuTBSASBXggs5FISVQ5Yxzl-Iq58_JGpRYiPv30LRhbPuuXKXEccxl25VvP6EbQ7nZhw8ud9zlfsjX4iKFr8w3J52J-mlVL5-r7et6s3zcVtEqqpCjZtaNUQtFjXXJMmhSMRokJTWCBalMjM7EhlQAtilO74cGoyFrg54JeZyNQ5_zwMl_D-0-DL8epD-Q-onUH0j9iXSq3B0rLTP_i9N0E0n_ARC8TbI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radiation Effects in Quanta Image Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Krynski, Joanna ; Neyret, Alexandre ; Bernard, Vivian ; Lalucaa, Valerian ; Roch, Alexandre Le ; Materne, Alex ; Virmontois, Cedric ; Goiffon, Vincent</creator><creatorcontrib>Krynski, Joanna ; Neyret, Alexandre ; Bernard, Vivian ; Lalucaa, Valerian ; Roch, Alexandre Le ; Materne, Alex ; Virmontois, Cedric ; Goiffon, Vincent</creatorcontrib><description>The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging (<10 photons/s per pixel per frame) due to its extremely low dark current and deep sub-electron read noise, thus enabling single photoelectron resolution. These characteristics are further coupled with the benefits of CMOS technology processing, such as low power consumption and array sizes on the order of megapixels exhibiting good pixel uniformity. With growing interest in the use of these sensors for space missions, the vulnerability of QIS pixels to radiation is still an open question. To this end, we explore the effects of proton and neutron irradiation on a commercially available QIS camera up to a fluence of 2 × 10 11 particles/cm 2 . Results show that dark current changes in the QIS are similar to those in conventional, non-photoelectron resolving CMOS image sensors (CIS) under non-ionizing radiation. The continued applicability of the universal damage factor for displacement damage in silicon to this new technology, as well as to sub-zero temperatures and at various annealing times is demonstrated. An extension of the empirical model on dark current increase and random telegraph signal amplitudes to low temperatures is also investigated. Total-ionizing dose (TID) effects related to the sensor noise are also observed in the cameras irradiated with protons: column noise and fixed pattern noise are found to increase with proton fluence. We present histograms of the quantization of signal in dark and light conditions, demonstrating the QIS' continued ability to count photons after the highest fluence. However, radiation-induced increases to noise will contribute to the mistaking of dark electrons as photons. Provided that the integration time is small enough to limit the collection of carriers generated by bulk defects in the photodiode, TID effects in the readout circuitry are the main obstacles to accurate photon counting.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2025.3531409</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active pixel sensor (APS) ; Cameras ; CMOS image sensor (CIS) ; Dark current ; dark current distribution model ; displacement damage dose (DDD) ; Histograms ; Noise ; Photonics ; Protons ; quanta image sensor (QIS) ; Radiation effects ; Sensors ; single-photon imaging ; sub-electron read noise ; Temperature measurement ; Temperature sensors ; total-ionizing dose (TID)</subject><ispartof>IEEE transactions on nuclear science, 2025-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8625-8090 ; 0000-0001-5024-0115 ; 0000-0003-4083-5363 ; 0000-0002-9348-1565 ; 0009-0009-7843-3782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10845858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10845858$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krynski, Joanna</creatorcontrib><creatorcontrib>Neyret, Alexandre</creatorcontrib><creatorcontrib>Bernard, Vivian</creatorcontrib><creatorcontrib>Lalucaa, Valerian</creatorcontrib><creatorcontrib>Roch, Alexandre Le</creatorcontrib><creatorcontrib>Materne, Alex</creatorcontrib><creatorcontrib>Virmontois, Cedric</creatorcontrib><creatorcontrib>Goiffon, Vincent</creatorcontrib><title>Radiation Effects in Quanta Image Sensors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging (<10 photons/s per pixel per frame) due to its extremely low dark current and deep sub-electron read noise, thus enabling single photoelectron resolution. These characteristics are further coupled with the benefits of CMOS technology processing, such as low power consumption and array sizes on the order of megapixels exhibiting good pixel uniformity. With growing interest in the use of these sensors for space missions, the vulnerability of QIS pixels to radiation is still an open question. To this end, we explore the effects of proton and neutron irradiation on a commercially available QIS camera up to a fluence of 2 × 10 11 particles/cm 2 . Results show that dark current changes in the QIS are similar to those in conventional, non-photoelectron resolving CMOS image sensors (CIS) under non-ionizing radiation. The continued applicability of the universal damage factor for displacement damage in silicon to this new technology, as well as to sub-zero temperatures and at various annealing times is demonstrated. An extension of the empirical model on dark current increase and random telegraph signal amplitudes to low temperatures is also investigated. Total-ionizing dose (TID) effects related to the sensor noise are also observed in the cameras irradiated with protons: column noise and fixed pattern noise are found to increase with proton fluence. We present histograms of the quantization of signal in dark and light conditions, demonstrating the QIS' continued ability to count photons after the highest fluence. However, radiation-induced increases to noise will contribute to the mistaking of dark electrons as photons. Provided that the integration time is small enough to limit the collection of carriers generated by bulk defects in the photodiode, TID effects in the readout circuitry are the main obstacles to accurate photon counting.</description><subject>Active pixel sensor (APS)</subject><subject>Cameras</subject><subject>CMOS image sensor (CIS)</subject><subject>Dark current</subject><subject>dark current distribution model</subject><subject>displacement damage dose (DDD)</subject><subject>Histograms</subject><subject>Noise</subject><subject>Photonics</subject><subject>Protons</subject><subject>quanta image sensor (QIS)</subject><subject>Radiation effects</subject><subject>Sensors</subject><subject>single-photon imaging</subject><subject>sub-electron read noise</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>total-ionizing dose (TID)</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNjzFPwzAQhS0EEqGwMzBkZUjx2T73PKKqlEoVCJrdspwzCqIJisPAvydVOzA9Pem9d_cJcQtyDiDdQ_2ymyupcK5Rg5HuTBSASBXggs5FISVQ5Yxzl-Iq58_JGpRYiPv30LRhbPuuXKXEccxl25VvP6EbQ7nZhw8ud9zlfsjX4iKFr8w3J52J-mlVL5-r7et6s3zcVtEqqpCjZtaNUQtFjXXJMmhSMRokJTWCBalMjM7EhlQAtilO74cGoyFrg54JeZyNQ5_zwMl_D-0-DL8epD-Q-onUH0j9iXSq3B0rLTP_i9N0E0n_ARC8TbI</recordid><startdate>20250117</startdate><enddate>20250117</enddate><creator>Krynski, Joanna</creator><creator>Neyret, Alexandre</creator><creator>Bernard, Vivian</creator><creator>Lalucaa, Valerian</creator><creator>Roch, Alexandre Le</creator><creator>Materne, Alex</creator><creator>Virmontois, Cedric</creator><creator>Goiffon, Vincent</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8625-8090</orcidid><orcidid>https://orcid.org/0000-0001-5024-0115</orcidid><orcidid>https://orcid.org/0000-0003-4083-5363</orcidid><orcidid>https://orcid.org/0000-0002-9348-1565</orcidid><orcidid>https://orcid.org/0009-0009-7843-3782</orcidid></search><sort><creationdate>20250117</creationdate><title>Radiation Effects in Quanta Image Sensors</title><author>Krynski, Joanna ; Neyret, Alexandre ; Bernard, Vivian ; Lalucaa, Valerian ; Roch, Alexandre Le ; Materne, Alex ; Virmontois, Cedric ; Goiffon, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628-5ec3ee3d42728d69f6e1382cc4582035161024cc94cd82a1e6fc109ad5c4866a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Active pixel sensor (APS)</topic><topic>Cameras</topic><topic>CMOS image sensor (CIS)</topic><topic>Dark current</topic><topic>dark current distribution model</topic><topic>displacement damage dose (DDD)</topic><topic>Histograms</topic><topic>Noise</topic><topic>Photonics</topic><topic>Protons</topic><topic>quanta image sensor (QIS)</topic><topic>Radiation effects</topic><topic>Sensors</topic><topic>single-photon imaging</topic><topic>sub-electron read noise</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>total-ionizing dose (TID)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krynski, Joanna</creatorcontrib><creatorcontrib>Neyret, Alexandre</creatorcontrib><creatorcontrib>Bernard, Vivian</creatorcontrib><creatorcontrib>Lalucaa, Valerian</creatorcontrib><creatorcontrib>Roch, Alexandre Le</creatorcontrib><creatorcontrib>Materne, Alex</creatorcontrib><creatorcontrib>Virmontois, Cedric</creatorcontrib><creatorcontrib>Goiffon, Vincent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krynski, Joanna</au><au>Neyret, Alexandre</au><au>Bernard, Vivian</au><au>Lalucaa, Valerian</au><au>Roch, Alexandre Le</au><au>Materne, Alex</au><au>Virmontois, Cedric</au><au>Goiffon, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation Effects in Quanta Image Sensors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2025-01-17</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The quanta image sensor (QIS) is a promising emerging technology for ultra-low light imaging (<10 photons/s per pixel per frame) due to its extremely low dark current and deep sub-electron read noise, thus enabling single photoelectron resolution. These characteristics are further coupled with the benefits of CMOS technology processing, such as low power consumption and array sizes on the order of megapixels exhibiting good pixel uniformity. With growing interest in the use of these sensors for space missions, the vulnerability of QIS pixels to radiation is still an open question. To this end, we explore the effects of proton and neutron irradiation on a commercially available QIS camera up to a fluence of 2 × 10 11 particles/cm 2 . Results show that dark current changes in the QIS are similar to those in conventional, non-photoelectron resolving CMOS image sensors (CIS) under non-ionizing radiation. The continued applicability of the universal damage factor for displacement damage in silicon to this new technology, as well as to sub-zero temperatures and at various annealing times is demonstrated. An extension of the empirical model on dark current increase and random telegraph signal amplitudes to low temperatures is also investigated. Total-ionizing dose (TID) effects related to the sensor noise are also observed in the cameras irradiated with protons: column noise and fixed pattern noise are found to increase with proton fluence. We present histograms of the quantization of signal in dark and light conditions, demonstrating the QIS' continued ability to count photons after the highest fluence. However, radiation-induced increases to noise will contribute to the mistaking of dark electrons as photons. Provided that the integration time is small enough to limit the collection of carriers generated by bulk defects in the photodiode, TID effects in the readout circuitry are the main obstacles to accurate photon counting.</abstract><pub>IEEE</pub><doi>10.1109/TNS.2025.3531409</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8625-8090</orcidid><orcidid>https://orcid.org/0000-0001-5024-0115</orcidid><orcidid>https://orcid.org/0000-0003-4083-5363</orcidid><orcidid>https://orcid.org/0000-0002-9348-1565</orcidid><orcidid>https://orcid.org/0009-0009-7843-3782</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2025-01, p.1-1 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_2025_3531409 |
source | IEEE Electronic Library (IEL) |
subjects | Active pixel sensor (APS) Cameras CMOS image sensor (CIS) Dark current dark current distribution model displacement damage dose (DDD) Histograms Noise Photonics Protons quanta image sensor (QIS) Radiation effects Sensors single-photon imaging sub-electron read noise Temperature measurement Temperature sensors total-ionizing dose (TID) |
title | Radiation Effects in Quanta Image Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20Effects%20in%20Quanta%20Image%20Sensors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Krynski,%20Joanna&rft.date=2025-01-17&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2025.3531409&rft_dat=%3Ccrossref_RIE%3E10_1109_TNS_2025_3531409%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10845858&rfr_iscdi=true |