Pattern-Matching Unit for Medical Applications
We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magn...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2021-08, Vol.68 (8), p.2140-2145 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2145 |
---|---|
container_issue | 8 |
container_start_page | 2140 |
container_title | IEEE transactions on nuclear science |
container_volume | 68 |
creator | Leombruni, Orlando Annovi, Alberto Giannetti, Paola Biesuz, Nicolo Vladi Roda, Chiara Calvetti, Milene Piendibene, Marco Peretti, Luca Cencini, Matteo Tosetti, Michela Buonincontri, Guido |
description | We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magnetic resonance fingerprinting (MRF). This technique has the potential to replace multiple qualitative MRI acquisitions with a single reproducible measurement for increased sensitivity and efficiency of the examination. In MRF, a fast acquisition is followed by a pattern-matching (PM) task, where signal responses are matched to entries from a dictionary of simulated, physically feasible responses, yielding multiple tissue parameters simultaneously. Each voxel signal response in the volume is compared through scalar products with all dictionary entries to choose the best measurement reproduction. MRF is limited by the PM processing time, which scales exponentially with the dictionary dimensionality, i.e., with the number of tissue parameters to be reconstructed. In the context of HEP, we developed a powerful, compact, embedded system, optimized for extremely fast PM. This system executes real-time particle trajectory (track) reconstruction for online event selection in the HEP experiments, exploiting maximum parallelism and pipelining. Track reconstruction is executed in two steps. The associative memory (AM) ASIC first implements a PM algorithm by recognizing track candidates at low resolution. The second step, which is implemented into field programmable gate arrays (FPGAs), refines the AM output finding the track parameters at full resolution. We propose to use this system to achieve a faster reconstruction time in MRF. This article proposes an adaptation of the HEP system for medical imaging and shows some preliminary results. |
doi_str_mv | 10.1109/TNS.2021.3083894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2021_3083894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9440984</ieee_id><sourcerecordid>2562315668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-1af0d674e77b889fbccc9d90f140a7a0b8333ec9a82d16587e9f7a109d7187d13</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC511nNskmOZbiF1gVbM8hzSa6pe6uSXrw35vS4mlm4HlnmIeQa4QKEdTd8vWjqqHGioKkUrETMkHOZYlcyFMyAUBZKqbUObmIcZNHxoFPSPVuUnKhLxcm2a-u_yxWfZcKP4Ri4drOmm0xG8dtblI39PGSnHmzje7qWKdk9XC_nD-VL2-Pz_PZS2lrxlKJxkPbCOaEWEup_Npaq1oFHhkYYWAtKaXOKiPrFhsuhVNemPxGK1CKFumU3B72jmH42bmY9GbYhT6f1DVvaoq8aWSm4EDZMMQYnNdj6L5N-NUIem9FZyt6b0UfreTIzSHSOef-ccUYKMnoH6H5XFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562315668</pqid></control><display><type>article</type><title>Pattern-Matching Unit for Medical Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Leombruni, Orlando ; Annovi, Alberto ; Giannetti, Paola ; Biesuz, Nicolo Vladi ; Roda, Chiara ; Calvetti, Milene ; Piendibene, Marco ; Peretti, Luca ; Cencini, Matteo ; Tosetti, Michela ; Buonincontri, Guido</creator><creatorcontrib>Leombruni, Orlando ; Annovi, Alberto ; Giannetti, Paola ; Biesuz, Nicolo Vladi ; Roda, Chiara ; Calvetti, Milene ; Piendibene, Marco ; Peretti, Luca ; Cencini, Matteo ; Tosetti, Michela ; Buonincontri, Guido</creatorcontrib><description>We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magnetic resonance fingerprinting (MRF). This technique has the potential to replace multiple qualitative MRI acquisitions with a single reproducible measurement for increased sensitivity and efficiency of the examination. In MRF, a fast acquisition is followed by a pattern-matching (PM) task, where signal responses are matched to entries from a dictionary of simulated, physically feasible responses, yielding multiple tissue parameters simultaneously. Each voxel signal response in the volume is compared through scalar products with all dictionary entries to choose the best measurement reproduction. MRF is limited by the PM processing time, which scales exponentially with the dictionary dimensionality, i.e., with the number of tissue parameters to be reconstructed. In the context of HEP, we developed a powerful, compact, embedded system, optimized for extremely fast PM. This system executes real-time particle trajectory (track) reconstruction for online event selection in the HEP experiments, exploiting maximum parallelism and pipelining. Track reconstruction is executed in two steps. The associative memory (AM) ASIC first implements a PM algorithm by recognizing track candidates at low resolution. The second step, which is implemented into field programmable gate arrays (FPGAs), refines the AM output finding the track parameters at full resolution. We propose to use this system to achieve a faster reconstruction time in MRF. This article proposes an adaptation of the HEP system for medical imaging and shows some preliminary results.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2021.3083894</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerator architectures ; Acidity ; Algorithms ; application-specific integrated circuits ; Associative memory ; Correlation ; Data analysis ; Dictionaries ; Embedded systems ; Encoding ; Field programmable gate arrays ; Fingerprinting ; Image reconstruction ; knowledge transfer ; Magnetic resonance imaging ; magnetic resonance imaging (MRI) ; medical diagnostic imaging ; Medical imaging ; Parameters ; Particle trajectories ; Pattern matching ; Reconstruction ; Resonance ; Social impact ; Sodium channels</subject><ispartof>IEEE transactions on nuclear science, 2021-08, Vol.68 (8), p.2140-2145</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-1af0d674e77b889fbccc9d90f140a7a0b8333ec9a82d16587e9f7a109d7187d13</cites><orcidid>0000-0002-5827-0367 ; 0000-0002-2515-7560 ; 0000-0002-3721-9490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9440984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9440984$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leombruni, Orlando</creatorcontrib><creatorcontrib>Annovi, Alberto</creatorcontrib><creatorcontrib>Giannetti, Paola</creatorcontrib><creatorcontrib>Biesuz, Nicolo Vladi</creatorcontrib><creatorcontrib>Roda, Chiara</creatorcontrib><creatorcontrib>Calvetti, Milene</creatorcontrib><creatorcontrib>Piendibene, Marco</creatorcontrib><creatorcontrib>Peretti, Luca</creatorcontrib><creatorcontrib>Cencini, Matteo</creatorcontrib><creatorcontrib>Tosetti, Michela</creatorcontrib><creatorcontrib>Buonincontri, Guido</creatorcontrib><title>Pattern-Matching Unit for Medical Applications</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magnetic resonance fingerprinting (MRF). This technique has the potential to replace multiple qualitative MRI acquisitions with a single reproducible measurement for increased sensitivity and efficiency of the examination. In MRF, a fast acquisition is followed by a pattern-matching (PM) task, where signal responses are matched to entries from a dictionary of simulated, physically feasible responses, yielding multiple tissue parameters simultaneously. Each voxel signal response in the volume is compared through scalar products with all dictionary entries to choose the best measurement reproduction. MRF is limited by the PM processing time, which scales exponentially with the dictionary dimensionality, i.e., with the number of tissue parameters to be reconstructed. In the context of HEP, we developed a powerful, compact, embedded system, optimized for extremely fast PM. This system executes real-time particle trajectory (track) reconstruction for online event selection in the HEP experiments, exploiting maximum parallelism and pipelining. Track reconstruction is executed in two steps. The associative memory (AM) ASIC first implements a PM algorithm by recognizing track candidates at low resolution. The second step, which is implemented into field programmable gate arrays (FPGAs), refines the AM output finding the track parameters at full resolution. We propose to use this system to achieve a faster reconstruction time in MRF. This article proposes an adaptation of the HEP system for medical imaging and shows some preliminary results.</description><subject>Accelerator architectures</subject><subject>Acidity</subject><subject>Algorithms</subject><subject>application-specific integrated circuits</subject><subject>Associative memory</subject><subject>Correlation</subject><subject>Data analysis</subject><subject>Dictionaries</subject><subject>Embedded systems</subject><subject>Encoding</subject><subject>Field programmable gate arrays</subject><subject>Fingerprinting</subject><subject>Image reconstruction</subject><subject>knowledge transfer</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance imaging (MRI)</subject><subject>medical diagnostic imaging</subject><subject>Medical imaging</subject><subject>Parameters</subject><subject>Particle trajectories</subject><subject>Pattern matching</subject><subject>Reconstruction</subject><subject>Resonance</subject><subject>Social impact</subject><subject>Sodium channels</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC511nNskmOZbiF1gVbM8hzSa6pe6uSXrw35vS4mlm4HlnmIeQa4QKEdTd8vWjqqHGioKkUrETMkHOZYlcyFMyAUBZKqbUObmIcZNHxoFPSPVuUnKhLxcm2a-u_yxWfZcKP4Ri4drOmm0xG8dtblI39PGSnHmzje7qWKdk9XC_nD-VL2-Pz_PZS2lrxlKJxkPbCOaEWEup_Npaq1oFHhkYYWAtKaXOKiPrFhsuhVNemPxGK1CKFumU3B72jmH42bmY9GbYhT6f1DVvaoq8aWSm4EDZMMQYnNdj6L5N-NUIem9FZyt6b0UfreTIzSHSOef-ccUYKMnoH6H5XFE</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Leombruni, Orlando</creator><creator>Annovi, Alberto</creator><creator>Giannetti, Paola</creator><creator>Biesuz, Nicolo Vladi</creator><creator>Roda, Chiara</creator><creator>Calvetti, Milene</creator><creator>Piendibene, Marco</creator><creator>Peretti, Luca</creator><creator>Cencini, Matteo</creator><creator>Tosetti, Michela</creator><creator>Buonincontri, Guido</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5827-0367</orcidid><orcidid>https://orcid.org/0000-0002-2515-7560</orcidid><orcidid>https://orcid.org/0000-0002-3721-9490</orcidid></search><sort><creationdate>20210801</creationdate><title>Pattern-Matching Unit for Medical Applications</title><author>Leombruni, Orlando ; Annovi, Alberto ; Giannetti, Paola ; Biesuz, Nicolo Vladi ; Roda, Chiara ; Calvetti, Milene ; Piendibene, Marco ; Peretti, Luca ; Cencini, Matteo ; Tosetti, Michela ; Buonincontri, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-1af0d674e77b889fbccc9d90f140a7a0b8333ec9a82d16587e9f7a109d7187d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerator architectures</topic><topic>Acidity</topic><topic>Algorithms</topic><topic>application-specific integrated circuits</topic><topic>Associative memory</topic><topic>Correlation</topic><topic>Data analysis</topic><topic>Dictionaries</topic><topic>Embedded systems</topic><topic>Encoding</topic><topic>Field programmable gate arrays</topic><topic>Fingerprinting</topic><topic>Image reconstruction</topic><topic>knowledge transfer</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance imaging (MRI)</topic><topic>medical diagnostic imaging</topic><topic>Medical imaging</topic><topic>Parameters</topic><topic>Particle trajectories</topic><topic>Pattern matching</topic><topic>Reconstruction</topic><topic>Resonance</topic><topic>Social impact</topic><topic>Sodium channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leombruni, Orlando</creatorcontrib><creatorcontrib>Annovi, Alberto</creatorcontrib><creatorcontrib>Giannetti, Paola</creatorcontrib><creatorcontrib>Biesuz, Nicolo Vladi</creatorcontrib><creatorcontrib>Roda, Chiara</creatorcontrib><creatorcontrib>Calvetti, Milene</creatorcontrib><creatorcontrib>Piendibene, Marco</creatorcontrib><creatorcontrib>Peretti, Luca</creatorcontrib><creatorcontrib>Cencini, Matteo</creatorcontrib><creatorcontrib>Tosetti, Michela</creatorcontrib><creatorcontrib>Buonincontri, Guido</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leombruni, Orlando</au><au>Annovi, Alberto</au><au>Giannetti, Paola</au><au>Biesuz, Nicolo Vladi</au><au>Roda, Chiara</au><au>Calvetti, Milene</au><au>Piendibene, Marco</au><au>Peretti, Luca</au><au>Cencini, Matteo</au><au>Tosetti, Michela</au><au>Buonincontri, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern-Matching Unit for Medical Applications</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>68</volume><issue>8</issue><spage>2140</spage><epage>2145</epage><pages>2140-2145</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magnetic resonance fingerprinting (MRF). This technique has the potential to replace multiple qualitative MRI acquisitions with a single reproducible measurement for increased sensitivity and efficiency of the examination. In MRF, a fast acquisition is followed by a pattern-matching (PM) task, where signal responses are matched to entries from a dictionary of simulated, physically feasible responses, yielding multiple tissue parameters simultaneously. Each voxel signal response in the volume is compared through scalar products with all dictionary entries to choose the best measurement reproduction. MRF is limited by the PM processing time, which scales exponentially with the dictionary dimensionality, i.e., with the number of tissue parameters to be reconstructed. In the context of HEP, we developed a powerful, compact, embedded system, optimized for extremely fast PM. This system executes real-time particle trajectory (track) reconstruction for online event selection in the HEP experiments, exploiting maximum parallelism and pipelining. Track reconstruction is executed in two steps. The associative memory (AM) ASIC first implements a PM algorithm by recognizing track candidates at low resolution. The second step, which is implemented into field programmable gate arrays (FPGAs), refines the AM output finding the track parameters at full resolution. We propose to use this system to achieve a faster reconstruction time in MRF. This article proposes an adaptation of the HEP system for medical imaging and shows some preliminary results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2021.3083894</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5827-0367</orcidid><orcidid>https://orcid.org/0000-0002-2515-7560</orcidid><orcidid>https://orcid.org/0000-0002-3721-9490</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2021-08, Vol.68 (8), p.2140-2145 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_2021_3083894 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerator architectures Acidity Algorithms application-specific integrated circuits Associative memory Correlation Data analysis Dictionaries Embedded systems Encoding Field programmable gate arrays Fingerprinting Image reconstruction knowledge transfer Magnetic resonance imaging magnetic resonance imaging (MRI) medical diagnostic imaging Medical imaging Parameters Particle trajectories Pattern matching Reconstruction Resonance Social impact Sodium channels |
title | Pattern-Matching Unit for Medical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern-Matching%20Unit%20for%20Medical%20Applications&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Leombruni,%20Orlando&rft.date=2021-08-01&rft.volume=68&rft.issue=8&rft.spage=2140&rft.epage=2145&rft.pages=2140-2145&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2021.3083894&rft_dat=%3Cproquest_RIE%3E2562315668%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562315668&rft_id=info:pmid/&rft_ieee_id=9440984&rfr_iscdi=true |