Pattern-Matching Unit for Medical Applications

We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2021-08, Vol.68 (8), p.2140-2145
Hauptverfasser: Leombruni, Orlando, Annovi, Alberto, Giannetti, Paola, Biesuz, Nicolo Vladi, Roda, Chiara, Calvetti, Milene, Piendibene, Marco, Peretti, Luca, Cencini, Matteo, Tosetti, Michela, Buonincontri, Guido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2145
container_issue 8
container_start_page 2140
container_title IEEE transactions on nuclear science
container_volume 68
creator Leombruni, Orlando
Annovi, Alberto
Giannetti, Paola
Biesuz, Nicolo Vladi
Roda, Chiara
Calvetti, Milene
Piendibene, Marco
Peretti, Luca
Cencini, Matteo
Tosetti, Michela
Buonincontri, Guido
description We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magnetic resonance fingerprinting (MRF). This technique has the potential to replace multiple qualitative MRI acquisitions with a single reproducible measurement for increased sensitivity and efficiency of the examination. In MRF, a fast acquisition is followed by a pattern-matching (PM) task, where signal responses are matched to entries from a dictionary of simulated, physically feasible responses, yielding multiple tissue parameters simultaneously. Each voxel signal response in the volume is compared through scalar products with all dictionary entries to choose the best measurement reproduction. MRF is limited by the PM processing time, which scales exponentially with the dictionary dimensionality, i.e., with the number of tissue parameters to be reconstructed. In the context of HEP, we developed a powerful, compact, embedded system, optimized for extremely fast PM. This system executes real-time particle trajectory (track) reconstruction for online event selection in the HEP experiments, exploiting maximum parallelism and pipelining. Track reconstruction is executed in two steps. The associative memory (AM) ASIC first implements a PM algorithm by recognizing track candidates at low resolution. The second step, which is implemented into field programmable gate arrays (FPGAs), refines the AM output finding the track parameters at full resolution. We propose to use this system to achieve a faster reconstruction time in MRF. This article proposes an adaptation of the HEP system for medical imaging and shows some preliminary results.
doi_str_mv 10.1109/TNS.2021.3083894
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2021_3083894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9440984</ieee_id><sourcerecordid>2562315668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-1af0d674e77b889fbccc9d90f140a7a0b8333ec9a82d16587e9f7a109d7187d13</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC511nNskmOZbiF1gVbM8hzSa6pe6uSXrw35vS4mlm4HlnmIeQa4QKEdTd8vWjqqHGioKkUrETMkHOZYlcyFMyAUBZKqbUObmIcZNHxoFPSPVuUnKhLxcm2a-u_yxWfZcKP4Ri4drOmm0xG8dtblI39PGSnHmzje7qWKdk9XC_nD-VL2-Pz_PZS2lrxlKJxkPbCOaEWEup_Npaq1oFHhkYYWAtKaXOKiPrFhsuhVNemPxGK1CKFumU3B72jmH42bmY9GbYhT6f1DVvaoq8aWSm4EDZMMQYnNdj6L5N-NUIem9FZyt6b0UfreTIzSHSOef-ccUYKMnoH6H5XFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562315668</pqid></control><display><type>article</type><title>Pattern-Matching Unit for Medical Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Leombruni, Orlando ; Annovi, Alberto ; Giannetti, Paola ; Biesuz, Nicolo Vladi ; Roda, Chiara ; Calvetti, Milene ; Piendibene, Marco ; Peretti, Luca ; Cencini, Matteo ; Tosetti, Michela ; Buonincontri, Guido</creator><creatorcontrib>Leombruni, Orlando ; Annovi, Alberto ; Giannetti, Paola ; Biesuz, Nicolo Vladi ; Roda, Chiara ; Calvetti, Milene ; Piendibene, Marco ; Peretti, Luca ; Cencini, Matteo ; Tosetti, Michela ; Buonincontri, Guido</creatorcontrib><description>We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magnetic resonance fingerprinting (MRF). This technique has the potential to replace multiple qualitative MRI acquisitions with a single reproducible measurement for increased sensitivity and efficiency of the examination. In MRF, a fast acquisition is followed by a pattern-matching (PM) task, where signal responses are matched to entries from a dictionary of simulated, physically feasible responses, yielding multiple tissue parameters simultaneously. Each voxel signal response in the volume is compared through scalar products with all dictionary entries to choose the best measurement reproduction. MRF is limited by the PM processing time, which scales exponentially with the dictionary dimensionality, i.e., with the number of tissue parameters to be reconstructed. In the context of HEP, we developed a powerful, compact, embedded system, optimized for extremely fast PM. This system executes real-time particle trajectory (track) reconstruction for online event selection in the HEP experiments, exploiting maximum parallelism and pipelining. Track reconstruction is executed in two steps. The associative memory (AM) ASIC first implements a PM algorithm by recognizing track candidates at low resolution. The second step, which is implemented into field programmable gate arrays (FPGAs), refines the AM output finding the track parameters at full resolution. We propose to use this system to achieve a faster reconstruction time in MRF. This article proposes an adaptation of the HEP system for medical imaging and shows some preliminary results.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2021.3083894</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerator architectures ; Acidity ; Algorithms ; application-specific integrated circuits ; Associative memory ; Correlation ; Data analysis ; Dictionaries ; Embedded systems ; Encoding ; Field programmable gate arrays ; Fingerprinting ; Image reconstruction ; knowledge transfer ; Magnetic resonance imaging ; magnetic resonance imaging (MRI) ; medical diagnostic imaging ; Medical imaging ; Parameters ; Particle trajectories ; Pattern matching ; Reconstruction ; Resonance ; Social impact ; Sodium channels</subject><ispartof>IEEE transactions on nuclear science, 2021-08, Vol.68 (8), p.2140-2145</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-1af0d674e77b889fbccc9d90f140a7a0b8333ec9a82d16587e9f7a109d7187d13</cites><orcidid>0000-0002-5827-0367 ; 0000-0002-2515-7560 ; 0000-0002-3721-9490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9440984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9440984$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leombruni, Orlando</creatorcontrib><creatorcontrib>Annovi, Alberto</creatorcontrib><creatorcontrib>Giannetti, Paola</creatorcontrib><creatorcontrib>Biesuz, Nicolo Vladi</creatorcontrib><creatorcontrib>Roda, Chiara</creatorcontrib><creatorcontrib>Calvetti, Milene</creatorcontrib><creatorcontrib>Piendibene, Marco</creatorcontrib><creatorcontrib>Peretti, Luca</creatorcontrib><creatorcontrib>Cencini, Matteo</creatorcontrib><creatorcontrib>Tosetti, Michela</creatorcontrib><creatorcontrib>Buonincontri, Guido</creatorcontrib><title>Pattern-Matching Unit for Medical Applications</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magnetic resonance fingerprinting (MRF). This technique has the potential to replace multiple qualitative MRI acquisitions with a single reproducible measurement for increased sensitivity and efficiency of the examination. In MRF, a fast acquisition is followed by a pattern-matching (PM) task, where signal responses are matched to entries from a dictionary of simulated, physically feasible responses, yielding multiple tissue parameters simultaneously. Each voxel signal response in the volume is compared through scalar products with all dictionary entries to choose the best measurement reproduction. MRF is limited by the PM processing time, which scales exponentially with the dictionary dimensionality, i.e., with the number of tissue parameters to be reconstructed. In the context of HEP, we developed a powerful, compact, embedded system, optimized for extremely fast PM. This system executes real-time particle trajectory (track) reconstruction for online event selection in the HEP experiments, exploiting maximum parallelism and pipelining. Track reconstruction is executed in two steps. The associative memory (AM) ASIC first implements a PM algorithm by recognizing track candidates at low resolution. The second step, which is implemented into field programmable gate arrays (FPGAs), refines the AM output finding the track parameters at full resolution. We propose to use this system to achieve a faster reconstruction time in MRF. This article proposes an adaptation of the HEP system for medical imaging and shows some preliminary results.</description><subject>Accelerator architectures</subject><subject>Acidity</subject><subject>Algorithms</subject><subject>application-specific integrated circuits</subject><subject>Associative memory</subject><subject>Correlation</subject><subject>Data analysis</subject><subject>Dictionaries</subject><subject>Embedded systems</subject><subject>Encoding</subject><subject>Field programmable gate arrays</subject><subject>Fingerprinting</subject><subject>Image reconstruction</subject><subject>knowledge transfer</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance imaging (MRI)</subject><subject>medical diagnostic imaging</subject><subject>Medical imaging</subject><subject>Parameters</subject><subject>Particle trajectories</subject><subject>Pattern matching</subject><subject>Reconstruction</subject><subject>Resonance</subject><subject>Social impact</subject><subject>Sodium channels</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC511nNskmOZbiF1gVbM8hzSa6pe6uSXrw35vS4mlm4HlnmIeQa4QKEdTd8vWjqqHGioKkUrETMkHOZYlcyFMyAUBZKqbUObmIcZNHxoFPSPVuUnKhLxcm2a-u_yxWfZcKP4Ri4drOmm0xG8dtblI39PGSnHmzje7qWKdk9XC_nD-VL2-Pz_PZS2lrxlKJxkPbCOaEWEup_Npaq1oFHhkYYWAtKaXOKiPrFhsuhVNemPxGK1CKFumU3B72jmH42bmY9GbYhT6f1DVvaoq8aWSm4EDZMMQYnNdj6L5N-NUIem9FZyt6b0UfreTIzSHSOef-ccUYKMnoH6H5XFE</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Leombruni, Orlando</creator><creator>Annovi, Alberto</creator><creator>Giannetti, Paola</creator><creator>Biesuz, Nicolo Vladi</creator><creator>Roda, Chiara</creator><creator>Calvetti, Milene</creator><creator>Piendibene, Marco</creator><creator>Peretti, Luca</creator><creator>Cencini, Matteo</creator><creator>Tosetti, Michela</creator><creator>Buonincontri, Guido</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5827-0367</orcidid><orcidid>https://orcid.org/0000-0002-2515-7560</orcidid><orcidid>https://orcid.org/0000-0002-3721-9490</orcidid></search><sort><creationdate>20210801</creationdate><title>Pattern-Matching Unit for Medical Applications</title><author>Leombruni, Orlando ; Annovi, Alberto ; Giannetti, Paola ; Biesuz, Nicolo Vladi ; Roda, Chiara ; Calvetti, Milene ; Piendibene, Marco ; Peretti, Luca ; Cencini, Matteo ; Tosetti, Michela ; Buonincontri, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-1af0d674e77b889fbccc9d90f140a7a0b8333ec9a82d16587e9f7a109d7187d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerator architectures</topic><topic>Acidity</topic><topic>Algorithms</topic><topic>application-specific integrated circuits</topic><topic>Associative memory</topic><topic>Correlation</topic><topic>Data analysis</topic><topic>Dictionaries</topic><topic>Embedded systems</topic><topic>Encoding</topic><topic>Field programmable gate arrays</topic><topic>Fingerprinting</topic><topic>Image reconstruction</topic><topic>knowledge transfer</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance imaging (MRI)</topic><topic>medical diagnostic imaging</topic><topic>Medical imaging</topic><topic>Parameters</topic><topic>Particle trajectories</topic><topic>Pattern matching</topic><topic>Reconstruction</topic><topic>Resonance</topic><topic>Social impact</topic><topic>Sodium channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leombruni, Orlando</creatorcontrib><creatorcontrib>Annovi, Alberto</creatorcontrib><creatorcontrib>Giannetti, Paola</creatorcontrib><creatorcontrib>Biesuz, Nicolo Vladi</creatorcontrib><creatorcontrib>Roda, Chiara</creatorcontrib><creatorcontrib>Calvetti, Milene</creatorcontrib><creatorcontrib>Piendibene, Marco</creatorcontrib><creatorcontrib>Peretti, Luca</creatorcontrib><creatorcontrib>Cencini, Matteo</creatorcontrib><creatorcontrib>Tosetti, Michela</creatorcontrib><creatorcontrib>Buonincontri, Guido</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leombruni, Orlando</au><au>Annovi, Alberto</au><au>Giannetti, Paola</au><au>Biesuz, Nicolo Vladi</au><au>Roda, Chiara</au><au>Calvetti, Milene</au><au>Piendibene, Marco</au><au>Peretti, Luca</au><au>Cencini, Matteo</au><au>Tosetti, Michela</au><au>Buonincontri, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern-Matching Unit for Medical Applications</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>68</volume><issue>8</issue><spage>2140</spage><epage>2145</epage><pages>2140-2145</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>We explore the application of concepts developed in high-energy physics (HEP) in a field of high social impact, i.e., advanced medical data analysis. More specifically, we focus on shortening the reconstruction times of a multi-parametric quantitative magnetic resonance imaging (MRI) technique: magnetic resonance fingerprinting (MRF). This technique has the potential to replace multiple qualitative MRI acquisitions with a single reproducible measurement for increased sensitivity and efficiency of the examination. In MRF, a fast acquisition is followed by a pattern-matching (PM) task, where signal responses are matched to entries from a dictionary of simulated, physically feasible responses, yielding multiple tissue parameters simultaneously. Each voxel signal response in the volume is compared through scalar products with all dictionary entries to choose the best measurement reproduction. MRF is limited by the PM processing time, which scales exponentially with the dictionary dimensionality, i.e., with the number of tissue parameters to be reconstructed. In the context of HEP, we developed a powerful, compact, embedded system, optimized for extremely fast PM. This system executes real-time particle trajectory (track) reconstruction for online event selection in the HEP experiments, exploiting maximum parallelism and pipelining. Track reconstruction is executed in two steps. The associative memory (AM) ASIC first implements a PM algorithm by recognizing track candidates at low resolution. The second step, which is implemented into field programmable gate arrays (FPGAs), refines the AM output finding the track parameters at full resolution. We propose to use this system to achieve a faster reconstruction time in MRF. This article proposes an adaptation of the HEP system for medical imaging and shows some preliminary results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2021.3083894</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5827-0367</orcidid><orcidid>https://orcid.org/0000-0002-2515-7560</orcidid><orcidid>https://orcid.org/0000-0002-3721-9490</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2021-08, Vol.68 (8), p.2140-2145
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2021_3083894
source IEEE Electronic Library (IEL)
subjects Accelerator architectures
Acidity
Algorithms
application-specific integrated circuits
Associative memory
Correlation
Data analysis
Dictionaries
Embedded systems
Encoding
Field programmable gate arrays
Fingerprinting
Image reconstruction
knowledge transfer
Magnetic resonance imaging
magnetic resonance imaging (MRI)
medical diagnostic imaging
Medical imaging
Parameters
Particle trajectories
Pattern matching
Reconstruction
Resonance
Social impact
Sodium channels
title Pattern-Matching Unit for Medical Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern-Matching%20Unit%20for%20Medical%20Applications&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Leombruni,%20Orlando&rft.date=2021-08-01&rft.volume=68&rft.issue=8&rft.spage=2140&rft.epage=2145&rft.pages=2140-2145&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2021.3083894&rft_dat=%3Cproquest_RIE%3E2562315668%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562315668&rft_id=info:pmid/&rft_ieee_id=9440984&rfr_iscdi=true