Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP
To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on ca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2021-02, Vol.68 (2), p.110-117 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 2 |
container_start_page | 110 |
container_title | IEEE transactions on nuclear science |
container_volume | 68 |
creator | Ma, Baolong Song, Lei Yan, Mingfei Ikeda, Yujiro Otake, Yoshie Wang, Sheng |
description | To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on calculations made by the Monte Carlo N-Particle Transport Code (MCNP). A layered shielding configuration with two materials of borated polyethylene (BPE) and lead (Pb) in the order of BPE/Pb/BPE/Pb for RIKEN Accelerator-driven Compact Neutron Source (RANS) was examined using this method, and two objectives were optimized simultaneously: equivalent dose rate and shielding structure weight. As a result, a tradeoff relationship between the objectives was finally obtained in the form of a Pareto front. The optimization results revealed significant improvements compared with the current RANS shielding configurations in terms of both dose and weight. The results indicate that a reduction in shielding weight of about 60% can be obtained by adopting the optimized shielding structure design, without sacrificing shielding performance. The performance of the method was discussed by showing advantages of NSGA-MC over the so-called weight sum method. |
doi_str_mv | 10.1109/TNS.2020.3040500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2020_3040500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9270021</ieee_id><sourcerecordid>2490808682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9c2faf5b026d0cfd02022634ac661eae2758b78fbb87227205be4e1a7aa7ba603</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mz22yyewyp1kI_hNZz2GwndUuaxE0i1IN_u1sqnoYZ3u_NzCPknsGIMVBPm-V6xIHDaAwhCIALMmBCyICJWF6SAQCTgQqVuiY3bbv3bShADMjPoi87W-d7NJ39QrpqOnuw39rPKrr-sFhubbWjE2ztrqJF7WhaHxptOpoYgyU63dUumDjPVnSJfedOXN07gy3NjzRpmtKas11d0OV6mgSzGdXVli7S5dstuSp02eLdXx2S95fnTfoazFfTWZrMA8MV6wJleKELkQOPtmCKrf-T82gcahNFDDXyWMg8lkWey5jzmIPIMUSmY63jXEcwHpLHs2_j6s8e2y7b-xsrvzLjoQIJMpLcq-CsMq5uW4dF1jh70O6YMchOKWc-5eyUcvaXskcezohFxH-54jEAZ-Nf0GR5IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490808682</pqid></control><display><type>article</type><title>Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Baolong ; Song, Lei ; Yan, Mingfei ; Ikeda, Yujiro ; Otake, Yoshie ; Wang, Sheng</creator><creatorcontrib>Ma, Baolong ; Song, Lei ; Yan, Mingfei ; Ikeda, Yujiro ; Otake, Yoshie ; Wang, Sheng</creatorcontrib><description>To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on calculations made by the Monte Carlo N-Particle Transport Code (MCNP). A layered shielding configuration with two materials of borated polyethylene (BPE) and lead (Pb) in the order of BPE/Pb/BPE/Pb for RIKEN Accelerator-driven Compact Neutron Source (RANS) was examined using this method, and two objectives were optimized simultaneously: equivalent dose rate and shielding structure weight. As a result, a tradeoff relationship between the objectives was finally obtained in the form of a Pareto front. The optimization results revealed significant improvements compared with the current RANS shielding configurations in terms of both dose and weight. The results indicate that a reduction in shielding weight of about 60% can be obtained by adopting the optimized shielding structure design, without sacrificing shielding performance. The performance of the method was discussed by showing advantages of NSGA-MC over the so-called weight sum method.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2020.3040500</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Compact accelerator-driven neutron sources (CANS) ; Configurations ; Design ; Design optimization ; Dosage ; equivalent dose rate ; Genetic algorithms ; Lead ; Linear programming ; Monte Carlo N-particle transport code (MCNP) ; Monte Carlo simulation ; multiobjective shielding design ; Multiple objective analysis ; Neutron sources ; Neutrons ; nondominated sorting genetic algorithm (NSGA) ; Optimization ; Pareto optimization ; Polyethylene ; Polyethylenes ; Shielding ; shielding weight ; Sociology ; Sorting ; Sorting algorithms ; Statistics ; Weight</subject><ispartof>IEEE transactions on nuclear science, 2021-02, Vol.68 (2), p.110-117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9c2faf5b026d0cfd02022634ac661eae2758b78fbb87227205be4e1a7aa7ba603</citedby><cites>FETCH-LOGICAL-c291t-9c2faf5b026d0cfd02022634ac661eae2758b78fbb87227205be4e1a7aa7ba603</cites><orcidid>0000-0003-3494-8935 ; 0000-0003-1131-0066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9270021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9270021$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Baolong</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Yan, Mingfei</creatorcontrib><creatorcontrib>Ikeda, Yujiro</creatorcontrib><creatorcontrib>Otake, Yoshie</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><title>Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on calculations made by the Monte Carlo N-Particle Transport Code (MCNP). A layered shielding configuration with two materials of borated polyethylene (BPE) and lead (Pb) in the order of BPE/Pb/BPE/Pb for RIKEN Accelerator-driven Compact Neutron Source (RANS) was examined using this method, and two objectives were optimized simultaneously: equivalent dose rate and shielding structure weight. As a result, a tradeoff relationship between the objectives was finally obtained in the form of a Pareto front. The optimization results revealed significant improvements compared with the current RANS shielding configurations in terms of both dose and weight. The results indicate that a reduction in shielding weight of about 60% can be obtained by adopting the optimized shielding structure design, without sacrificing shielding performance. The performance of the method was discussed by showing advantages of NSGA-MC over the so-called weight sum method.</description><subject>Acceleration</subject><subject>Compact accelerator-driven neutron sources (CANS)</subject><subject>Configurations</subject><subject>Design</subject><subject>Design optimization</subject><subject>Dosage</subject><subject>equivalent dose rate</subject><subject>Genetic algorithms</subject><subject>Lead</subject><subject>Linear programming</subject><subject>Monte Carlo N-particle transport code (MCNP)</subject><subject>Monte Carlo simulation</subject><subject>multiobjective shielding design</subject><subject>Multiple objective analysis</subject><subject>Neutron sources</subject><subject>Neutrons</subject><subject>nondominated sorting genetic algorithm (NSGA)</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Shielding</subject><subject>shielding weight</subject><subject>Sociology</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>Statistics</subject><subject>Weight</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mz22yyewyp1kI_hNZz2GwndUuaxE0i1IN_u1sqnoYZ3u_NzCPknsGIMVBPm-V6xIHDaAwhCIALMmBCyICJWF6SAQCTgQqVuiY3bbv3bShADMjPoi87W-d7NJ39QrpqOnuw39rPKrr-sFhubbWjE2ztrqJF7WhaHxptOpoYgyU63dUumDjPVnSJfedOXN07gy3NjzRpmtKas11d0OV6mgSzGdXVli7S5dstuSp02eLdXx2S95fnTfoazFfTWZrMA8MV6wJleKELkQOPtmCKrf-T82gcahNFDDXyWMg8lkWey5jzmIPIMUSmY63jXEcwHpLHs2_j6s8e2y7b-xsrvzLjoQIJMpLcq-CsMq5uW4dF1jh70O6YMchOKWc-5eyUcvaXskcezohFxH-54jEAZ-Nf0GR5IQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ma, Baolong</creator><creator>Song, Lei</creator><creator>Yan, Mingfei</creator><creator>Ikeda, Yujiro</creator><creator>Otake, Yoshie</creator><creator>Wang, Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3494-8935</orcidid><orcidid>https://orcid.org/0000-0003-1131-0066</orcidid></search><sort><creationdate>20210201</creationdate><title>Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP</title><author>Ma, Baolong ; Song, Lei ; Yan, Mingfei ; Ikeda, Yujiro ; Otake, Yoshie ; Wang, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9c2faf5b026d0cfd02022634ac661eae2758b78fbb87227205be4e1a7aa7ba603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Compact accelerator-driven neutron sources (CANS)</topic><topic>Configurations</topic><topic>Design</topic><topic>Design optimization</topic><topic>Dosage</topic><topic>equivalent dose rate</topic><topic>Genetic algorithms</topic><topic>Lead</topic><topic>Linear programming</topic><topic>Monte Carlo N-particle transport code (MCNP)</topic><topic>Monte Carlo simulation</topic><topic>multiobjective shielding design</topic><topic>Multiple objective analysis</topic><topic>Neutron sources</topic><topic>Neutrons</topic><topic>nondominated sorting genetic algorithm (NSGA)</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Shielding</topic><topic>shielding weight</topic><topic>Sociology</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>Statistics</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Baolong</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Yan, Mingfei</creatorcontrib><creatorcontrib>Ikeda, Yujiro</creatorcontrib><creatorcontrib>Otake, Yoshie</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Baolong</au><au>Song, Lei</au><au>Yan, Mingfei</au><au>Ikeda, Yujiro</au><au>Otake, Yoshie</au><au>Wang, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on calculations made by the Monte Carlo N-Particle Transport Code (MCNP). A layered shielding configuration with two materials of borated polyethylene (BPE) and lead (Pb) in the order of BPE/Pb/BPE/Pb for RIKEN Accelerator-driven Compact Neutron Source (RANS) was examined using this method, and two objectives were optimized simultaneously: equivalent dose rate and shielding structure weight. As a result, a tradeoff relationship between the objectives was finally obtained in the form of a Pareto front. The optimization results revealed significant improvements compared with the current RANS shielding configurations in terms of both dose and weight. The results indicate that a reduction in shielding weight of about 60% can be obtained by adopting the optimized shielding structure design, without sacrificing shielding performance. The performance of the method was discussed by showing advantages of NSGA-MC over the so-called weight sum method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2020.3040500</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3494-8935</orcidid><orcidid>https://orcid.org/0000-0003-1131-0066</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2021-02, Vol.68 (2), p.110-117 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_2020_3040500 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Compact accelerator-driven neutron sources (CANS) Configurations Design Design optimization Dosage equivalent dose rate Genetic algorithms Lead Linear programming Monte Carlo N-particle transport code (MCNP) Monte Carlo simulation multiobjective shielding design Multiple objective analysis Neutron sources Neutrons nondominated sorting genetic algorithm (NSGA) Optimization Pareto optimization Polyethylene Polyethylenes Shielding shielding weight Sociology Sorting Sorting algorithms Statistics Weight |
title | Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Optimization%20Shielding%20Design%20for%20Compact%20Accelerator-Driven%20Neutron%20Sources%20by%20Application%20of%20NSGA-II%20and%20MCNP&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Ma,%20Baolong&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2020.3040500&rft_dat=%3Cproquest_RIE%3E2490808682%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490808682&rft_id=info:pmid/&rft_ieee_id=9270021&rfr_iscdi=true |