Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP

To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2021-02, Vol.68 (2), p.110-117
Hauptverfasser: Ma, Baolong, Song, Lei, Yan, Mingfei, Ikeda, Yujiro, Otake, Yoshie, Wang, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 2
container_start_page 110
container_title IEEE transactions on nuclear science
container_volume 68
creator Ma, Baolong
Song, Lei
Yan, Mingfei
Ikeda, Yujiro
Otake, Yoshie
Wang, Sheng
description To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on calculations made by the Monte Carlo N-Particle Transport Code (MCNP). A layered shielding configuration with two materials of borated polyethylene (BPE) and lead (Pb) in the order of BPE/Pb/BPE/Pb for RIKEN Accelerator-driven Compact Neutron Source (RANS) was examined using this method, and two objectives were optimized simultaneously: equivalent dose rate and shielding structure weight. As a result, a tradeoff relationship between the objectives was finally obtained in the form of a Pareto front. The optimization results revealed significant improvements compared with the current RANS shielding configurations in terms of both dose and weight. The results indicate that a reduction in shielding weight of about 60% can be obtained by adopting the optimized shielding structure design, without sacrificing shielding performance. The performance of the method was discussed by showing advantages of NSGA-MC over the so-called weight sum method.
doi_str_mv 10.1109/TNS.2020.3040500
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2020_3040500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9270021</ieee_id><sourcerecordid>2490808682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9c2faf5b026d0cfd02022634ac661eae2758b78fbb87227205be4e1a7aa7ba603</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mz22yyewyp1kI_hNZz2GwndUuaxE0i1IN_u1sqnoYZ3u_NzCPknsGIMVBPm-V6xIHDaAwhCIALMmBCyICJWF6SAQCTgQqVuiY3bbv3bShADMjPoi87W-d7NJ39QrpqOnuw39rPKrr-sFhubbWjE2ztrqJF7WhaHxptOpoYgyU63dUumDjPVnSJfedOXN07gy3NjzRpmtKas11d0OV6mgSzGdXVli7S5dstuSp02eLdXx2S95fnTfoazFfTWZrMA8MV6wJleKELkQOPtmCKrf-T82gcahNFDDXyWMg8lkWey5jzmIPIMUSmY63jXEcwHpLHs2_j6s8e2y7b-xsrvzLjoQIJMpLcq-CsMq5uW4dF1jh70O6YMchOKWc-5eyUcvaXskcezohFxH-54jEAZ-Nf0GR5IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490808682</pqid></control><display><type>article</type><title>Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Baolong ; Song, Lei ; Yan, Mingfei ; Ikeda, Yujiro ; Otake, Yoshie ; Wang, Sheng</creator><creatorcontrib>Ma, Baolong ; Song, Lei ; Yan, Mingfei ; Ikeda, Yujiro ; Otake, Yoshie ; Wang, Sheng</creatorcontrib><description>To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on calculations made by the Monte Carlo N-Particle Transport Code (MCNP). A layered shielding configuration with two materials of borated polyethylene (BPE) and lead (Pb) in the order of BPE/Pb/BPE/Pb for RIKEN Accelerator-driven Compact Neutron Source (RANS) was examined using this method, and two objectives were optimized simultaneously: equivalent dose rate and shielding structure weight. As a result, a tradeoff relationship between the objectives was finally obtained in the form of a Pareto front. The optimization results revealed significant improvements compared with the current RANS shielding configurations in terms of both dose and weight. The results indicate that a reduction in shielding weight of about 60% can be obtained by adopting the optimized shielding structure design, without sacrificing shielding performance. The performance of the method was discussed by showing advantages of NSGA-MC over the so-called weight sum method.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2020.3040500</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Compact accelerator-driven neutron sources (CANS) ; Configurations ; Design ; Design optimization ; Dosage ; equivalent dose rate ; Genetic algorithms ; Lead ; Linear programming ; Monte Carlo N-particle transport code (MCNP) ; Monte Carlo simulation ; multiobjective shielding design ; Multiple objective analysis ; Neutron sources ; Neutrons ; nondominated sorting genetic algorithm (NSGA) ; Optimization ; Pareto optimization ; Polyethylene ; Polyethylenes ; Shielding ; shielding weight ; Sociology ; Sorting ; Sorting algorithms ; Statistics ; Weight</subject><ispartof>IEEE transactions on nuclear science, 2021-02, Vol.68 (2), p.110-117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9c2faf5b026d0cfd02022634ac661eae2758b78fbb87227205be4e1a7aa7ba603</citedby><cites>FETCH-LOGICAL-c291t-9c2faf5b026d0cfd02022634ac661eae2758b78fbb87227205be4e1a7aa7ba603</cites><orcidid>0000-0003-3494-8935 ; 0000-0003-1131-0066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9270021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9270021$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Baolong</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Yan, Mingfei</creatorcontrib><creatorcontrib>Ikeda, Yujiro</creatorcontrib><creatorcontrib>Otake, Yoshie</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><title>Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on calculations made by the Monte Carlo N-Particle Transport Code (MCNP). A layered shielding configuration with two materials of borated polyethylene (BPE) and lead (Pb) in the order of BPE/Pb/BPE/Pb for RIKEN Accelerator-driven Compact Neutron Source (RANS) was examined using this method, and two objectives were optimized simultaneously: equivalent dose rate and shielding structure weight. As a result, a tradeoff relationship between the objectives was finally obtained in the form of a Pareto front. The optimization results revealed significant improvements compared with the current RANS shielding configurations in terms of both dose and weight. The results indicate that a reduction in shielding weight of about 60% can be obtained by adopting the optimized shielding structure design, without sacrificing shielding performance. The performance of the method was discussed by showing advantages of NSGA-MC over the so-called weight sum method.</description><subject>Acceleration</subject><subject>Compact accelerator-driven neutron sources (CANS)</subject><subject>Configurations</subject><subject>Design</subject><subject>Design optimization</subject><subject>Dosage</subject><subject>equivalent dose rate</subject><subject>Genetic algorithms</subject><subject>Lead</subject><subject>Linear programming</subject><subject>Monte Carlo N-particle transport code (MCNP)</subject><subject>Monte Carlo simulation</subject><subject>multiobjective shielding design</subject><subject>Multiple objective analysis</subject><subject>Neutron sources</subject><subject>Neutrons</subject><subject>nondominated sorting genetic algorithm (NSGA)</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Shielding</subject><subject>shielding weight</subject><subject>Sociology</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>Statistics</subject><subject>Weight</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mz22yyewyp1kI_hNZz2GwndUuaxE0i1IN_u1sqnoYZ3u_NzCPknsGIMVBPm-V6xIHDaAwhCIALMmBCyICJWF6SAQCTgQqVuiY3bbv3bShADMjPoi87W-d7NJ39QrpqOnuw39rPKrr-sFhubbWjE2ztrqJF7WhaHxptOpoYgyU63dUumDjPVnSJfedOXN07gy3NjzRpmtKas11d0OV6mgSzGdXVli7S5dstuSp02eLdXx2S95fnTfoazFfTWZrMA8MV6wJleKELkQOPtmCKrf-T82gcahNFDDXyWMg8lkWey5jzmIPIMUSmY63jXEcwHpLHs2_j6s8e2y7b-xsrvzLjoQIJMpLcq-CsMq5uW4dF1jh70O6YMchOKWc-5eyUcvaXskcezohFxH-54jEAZ-Nf0GR5IQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ma, Baolong</creator><creator>Song, Lei</creator><creator>Yan, Mingfei</creator><creator>Ikeda, Yujiro</creator><creator>Otake, Yoshie</creator><creator>Wang, Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3494-8935</orcidid><orcidid>https://orcid.org/0000-0003-1131-0066</orcidid></search><sort><creationdate>20210201</creationdate><title>Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP</title><author>Ma, Baolong ; Song, Lei ; Yan, Mingfei ; Ikeda, Yujiro ; Otake, Yoshie ; Wang, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9c2faf5b026d0cfd02022634ac661eae2758b78fbb87227205be4e1a7aa7ba603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Compact accelerator-driven neutron sources (CANS)</topic><topic>Configurations</topic><topic>Design</topic><topic>Design optimization</topic><topic>Dosage</topic><topic>equivalent dose rate</topic><topic>Genetic algorithms</topic><topic>Lead</topic><topic>Linear programming</topic><topic>Monte Carlo N-particle transport code (MCNP)</topic><topic>Monte Carlo simulation</topic><topic>multiobjective shielding design</topic><topic>Multiple objective analysis</topic><topic>Neutron sources</topic><topic>Neutrons</topic><topic>nondominated sorting genetic algorithm (NSGA)</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Shielding</topic><topic>shielding weight</topic><topic>Sociology</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>Statistics</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Baolong</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Yan, Mingfei</creatorcontrib><creatorcontrib>Ikeda, Yujiro</creatorcontrib><creatorcontrib>Otake, Yoshie</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Baolong</au><au>Song, Lei</au><au>Yan, Mingfei</au><au>Ikeda, Yujiro</au><au>Otake, Yoshie</au><au>Wang, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>To find the optimal shielding design for compact accelerator-driven neutron sources (CANS) using multiobjective optimization, we developed a new method called nondominated sorting genetic algorithm-Monte Carlo method (NSGA-MC). NSGA-MC employs NSGA-II to optimize the shielding parameters based on calculations made by the Monte Carlo N-Particle Transport Code (MCNP). A layered shielding configuration with two materials of borated polyethylene (BPE) and lead (Pb) in the order of BPE/Pb/BPE/Pb for RIKEN Accelerator-driven Compact Neutron Source (RANS) was examined using this method, and two objectives were optimized simultaneously: equivalent dose rate and shielding structure weight. As a result, a tradeoff relationship between the objectives was finally obtained in the form of a Pareto front. The optimization results revealed significant improvements compared with the current RANS shielding configurations in terms of both dose and weight. The results indicate that a reduction in shielding weight of about 60% can be obtained by adopting the optimized shielding structure design, without sacrificing shielding performance. The performance of the method was discussed by showing advantages of NSGA-MC over the so-called weight sum method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2020.3040500</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3494-8935</orcidid><orcidid>https://orcid.org/0000-0003-1131-0066</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2021-02, Vol.68 (2), p.110-117
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2020_3040500
source IEEE Electronic Library (IEL)
subjects Acceleration
Compact accelerator-driven neutron sources (CANS)
Configurations
Design
Design optimization
Dosage
equivalent dose rate
Genetic algorithms
Lead
Linear programming
Monte Carlo N-particle transport code (MCNP)
Monte Carlo simulation
multiobjective shielding design
Multiple objective analysis
Neutron sources
Neutrons
nondominated sorting genetic algorithm (NSGA)
Optimization
Pareto optimization
Polyethylene
Polyethylenes
Shielding
shielding weight
Sociology
Sorting
Sorting algorithms
Statistics
Weight
title Multiobjective Optimization Shielding Design for Compact Accelerator-Driven Neutron Sources by Application of NSGA-II and MCNP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Optimization%20Shielding%20Design%20for%20Compact%20Accelerator-Driven%20Neutron%20Sources%20by%20Application%20of%20NSGA-II%20and%20MCNP&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Ma,%20Baolong&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2020.3040500&rft_dat=%3Cproquest_RIE%3E2490808682%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490808682&rft_id=info:pmid/&rft_ieee_id=9270021&rfr_iscdi=true