Pile-Up Correction in Spectroscopic Signals Using Regularized Sparse Reconstruction
Pile-up is a common problem in high-count-rate gamma spectroscopy. Many techniques have been introduced to overcome this problem. Sparse reconstruction is a recent signal processing method that could be used to solve this problem. In this article, we propose a modified sparse reconstruction method t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2020-05, Vol.67 (5), p.858-862 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 862 |
---|---|
container_issue | 5 |
container_start_page | 858 |
container_title | IEEE transactions on nuclear science |
container_volume | 67 |
creator | Kafaee, Mahdi Goodarzi, Mohammad Mohsen |
description | Pile-up is a common problem in high-count-rate gamma spectroscopy. Many techniques have been introduced to overcome this problem. Sparse reconstruction is a recent signal processing method that could be used to solve this problem. In this article, we propose a modified sparse reconstruction method to overcome pulse pile-up, especially with ultrahigh count rates. The method uses two regularization terms to compensate for the error caused by an inadequate sampling rate that is called the "verbosity" problem. It significantly improves the pile-up correction process. A scintillation detector pulse train is simulated in different rates by a Monte Carlo approach. Then, the proposed method is validated, and good results are achieved in ultrahigh count rates. |
doi_str_mv | 10.1109/TNS.2020.2985104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2020_2985104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9055189</ieee_id><sourcerecordid>2404039782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6db9cf65f03356774f2f856429b21439636246b26d18a79cc88fdc37dd76e1ca3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7eBS8Fj9J18tnkKMUvWFTc3XNp03TJsjY1aRH99WbtoldPMxOeZ8i8CJ1jmGEM6nr5tJgRIDAjSnIM7ABNMOcyxTyTh2gCgGWqmFLH6CSETRwZBz5Bixe7NemqS3LnvdG9dW1i22TRxd67oF1ndbKw67bchmQVbLtOXs162Jbefpk6cqUPJj5p14beDz8LTtFRE3Fztq9TtLq7XeYP6fz5_jG_maeaKNynoq6UbgRvgFIusow1pJFcMKIqghlVggrCREVEjWWZKa2lbGpNs7rOhMG6pFN0Oe7tvHsfTOiLjRv87qcFYcCAqkySSMFI6XhP8KYpOm_fSv9ZYCh20RUxumIXXbGPLipyVD5M5ZqgrWm1-dUAgFPBsYgNYJLbvtxdnbuh7aN69X810hcjbY35oxRwjqWi35Vniqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404039782</pqid></control><display><type>article</type><title>Pile-Up Correction in Spectroscopic Signals Using Regularized Sparse Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Kafaee, Mahdi ; Goodarzi, Mohammad Mohsen</creator><creatorcontrib>Kafaee, Mahdi ; Goodarzi, Mohammad Mohsen</creatorcontrib><description>Pile-up is a common problem in high-count-rate gamma spectroscopy. Many techniques have been introduced to overcome this problem. Sparse reconstruction is a recent signal processing method that could be used to solve this problem. In this article, we propose a modified sparse reconstruction method to overcome pulse pile-up, especially with ultrahigh count rates. The method uses two regularization terms to compensate for the error caused by an inadequate sampling rate that is called the "verbosity" problem. It significantly improves the pile-up correction process. A scintillation detector pulse train is simulated in different rates by a Monte Carlo approach. Then, the proposed method is validated, and good results are achieved in ultrahigh count rates.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2020.2985104</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Compressed sensing ; Computer simulation ; Delays ; Detectors ; Dictionaries ; Engineering ; Engineering, Electrical & Electronic ; Error compensation ; Gamma spectroscopy ; high count rate ; Monte Carlo ; Nuclear Science & Technology ; Photonics ; pile-up correction ; Reconstruction ; Regularization ; regularized sparse reconstruction ; Science & Technology ; Shape ; Signal processing ; Spectroscopy ; Technology</subject><ispartof>IEEE transactions on nuclear science, 2020-05, Vol.67 (5), p.858-862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000536516000012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c291t-6db9cf65f03356774f2f856429b21439636246b26d18a79cc88fdc37dd76e1ca3</citedby><cites>FETCH-LOGICAL-c291t-6db9cf65f03356774f2f856429b21439636246b26d18a79cc88fdc37dd76e1ca3</cites><orcidid>0000-0001-9250-3366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9055189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,28257,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9055189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kafaee, Mahdi</creatorcontrib><creatorcontrib>Goodarzi, Mohammad Mohsen</creatorcontrib><title>Pile-Up Correction in Spectroscopic Signals Using Regularized Sparse Reconstruction</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><addtitle>IEEE T NUCL SCI</addtitle><description>Pile-up is a common problem in high-count-rate gamma spectroscopy. Many techniques have been introduced to overcome this problem. Sparse reconstruction is a recent signal processing method that could be used to solve this problem. In this article, we propose a modified sparse reconstruction method to overcome pulse pile-up, especially with ultrahigh count rates. The method uses two regularization terms to compensate for the error caused by an inadequate sampling rate that is called the "verbosity" problem. It significantly improves the pile-up correction process. A scintillation detector pulse train is simulated in different rates by a Monte Carlo approach. Then, the proposed method is validated, and good results are achieved in ultrahigh count rates.</description><subject>Compressed sensing</subject><subject>Computer simulation</subject><subject>Delays</subject><subject>Detectors</subject><subject>Dictionaries</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Error compensation</subject><subject>Gamma spectroscopy</subject><subject>high count rate</subject><subject>Monte Carlo</subject><subject>Nuclear Science & Technology</subject><subject>Photonics</subject><subject>pile-up correction</subject><subject>Reconstruction</subject><subject>Regularization</subject><subject>regularized sparse reconstruction</subject><subject>Science & Technology</subject><subject>Shape</subject><subject>Signal processing</subject><subject>Spectroscopy</subject><subject>Technology</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkE1LxDAQhoMouK7eBS8Fj9J18tnkKMUvWFTc3XNp03TJsjY1aRH99WbtoldPMxOeZ8i8CJ1jmGEM6nr5tJgRIDAjSnIM7ABNMOcyxTyTh2gCgGWqmFLH6CSETRwZBz5Bixe7NemqS3LnvdG9dW1i22TRxd67oF1ndbKw67bchmQVbLtOXs162Jbefpk6cqUPJj5p14beDz8LTtFRE3Fztq9TtLq7XeYP6fz5_jG_maeaKNynoq6UbgRvgFIusow1pJFcMKIqghlVggrCREVEjWWZKa2lbGpNs7rOhMG6pFN0Oe7tvHsfTOiLjRv87qcFYcCAqkySSMFI6XhP8KYpOm_fSv9ZYCh20RUxumIXXbGPLipyVD5M5ZqgrWm1-dUAgFPBsYgNYJLbvtxdnbuh7aN69X810hcjbY35oxRwjqWi35Vniqc</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Kafaee, Mahdi</creator><creator>Goodarzi, Mohammad Mohsen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9250-3366</orcidid></search><sort><creationdate>20200501</creationdate><title>Pile-Up Correction in Spectroscopic Signals Using Regularized Sparse Reconstruction</title><author>Kafaee, Mahdi ; Goodarzi, Mohammad Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6db9cf65f03356774f2f856429b21439636246b26d18a79cc88fdc37dd76e1ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressed sensing</topic><topic>Computer simulation</topic><topic>Delays</topic><topic>Detectors</topic><topic>Dictionaries</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Error compensation</topic><topic>Gamma spectroscopy</topic><topic>high count rate</topic><topic>Monte Carlo</topic><topic>Nuclear Science & Technology</topic><topic>Photonics</topic><topic>pile-up correction</topic><topic>Reconstruction</topic><topic>Regularization</topic><topic>regularized sparse reconstruction</topic><topic>Science & Technology</topic><topic>Shape</topic><topic>Signal processing</topic><topic>Spectroscopy</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kafaee, Mahdi</creatorcontrib><creatorcontrib>Goodarzi, Mohammad Mohsen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kafaee, Mahdi</au><au>Goodarzi, Mohammad Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pile-Up Correction in Spectroscopic Signals Using Regularized Sparse Reconstruction</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><stitle>IEEE T NUCL SCI</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>67</volume><issue>5</issue><spage>858</spage><epage>862</epage><pages>858-862</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Pile-up is a common problem in high-count-rate gamma spectroscopy. Many techniques have been introduced to overcome this problem. Sparse reconstruction is a recent signal processing method that could be used to solve this problem. In this article, we propose a modified sparse reconstruction method to overcome pulse pile-up, especially with ultrahigh count rates. The method uses two regularization terms to compensate for the error caused by an inadequate sampling rate that is called the "verbosity" problem. It significantly improves the pile-up correction process. A scintillation detector pulse train is simulated in different rates by a Monte Carlo approach. Then, the proposed method is validated, and good results are achieved in ultrahigh count rates.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TNS.2020.2985104</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9250-3366</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2020-05, Vol.67 (5), p.858-862 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_2020_2985104 |
source | IEEE Electronic Library (IEL) |
subjects | Compressed sensing Computer simulation Delays Detectors Dictionaries Engineering Engineering, Electrical & Electronic Error compensation Gamma spectroscopy high count rate Monte Carlo Nuclear Science & Technology Photonics pile-up correction Reconstruction Regularization regularized sparse reconstruction Science & Technology Shape Signal processing Spectroscopy Technology |
title | Pile-Up Correction in Spectroscopic Signals Using Regularized Sparse Reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T22%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pile-Up%20Correction%20in%20Spectroscopic%20Signals%20Using%20Regularized%20Sparse%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Kafaee,%20Mahdi&rft.date=2020-05-01&rft.volume=67&rft.issue=5&rft.spage=858&rft.epage=862&rft.pages=858-862&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2020.2985104&rft_dat=%3Cproquest_RIE%3E2404039782%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404039782&rft_id=info:pmid/&rft_ieee_id=9055189&rfr_iscdi=true |