Radiation-Induced Variable Retention Time in Dynamic Random Access Memories
The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interf...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2020-01, Vol.67 (1), p.234-244 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244 |
---|---|
container_issue | 1 |
container_start_page | 234 |
container_title | IEEE transactions on nuclear science |
container_volume | 67 |
creator | Goiffon, Vincent Jay, Antoine Paillet, Philippe Bilba, Teddy Deladerriere, Theo Beaugendre, Guillaume Le Roch, Alexandre Dion, Arnaud Virmontois, Cedric Belloir, Jean-Marc Gaillardin, Marc |
description | The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interface states and silicon bulk defects can be a source of VRT. It is also highlighted that radiation-induced VRT in DRAMs is very similar to the radiation-induced dark current random telegraph signal in image sensors. Both phenomena probably share the same origin, but high-magnitude electric fields seem to play an important role in VRT only. Defect structural fluctuations (without change of charge state) seem to be the root cause of the observed VRT whereas processes involving trapping and emission of charge carriers are unlikely to be a source of VRT. VRT also appears to be the most probable cause of intermittent stuck bits in irradiated DRAMs. |
doi_str_mv | 10.1109/TNS.2019.2956293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2019_2956293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8915832</ieee_id><sourcerecordid>2349115550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-cd31959e8c00e933e5b94f33500c89eb612e2da36d0799ac4230daf34e2f81c73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJsmkzx1K_ilWhVq8hTWYhpbtbk_bQf--WFk_DMM87wzyM3QoYCAH4sPj4GkgQOJCohxLVGesJrU0h9Micsx6AMAWWiJfsKudV15YadI-9zV2Ibhvbppg2Yecp8B-Xoluuic9pS81hxBexJh4b_rhvXB09n7smtDUfe08583eq2xQpX7OLyq0z3Zxqn30_Py0mr8Xs82U6Gc8KL1FsCx-UQI1kPAChUqSXWFZKaQBvkJZDIUkGp4YBRojOl1JBcJUqSVZG-JHqs_vj3k1qf3eUt3bV7lLTnbRSlSi6vzV0FBwpn9qcE1V2k2Lt0t4KsAdltlNmD8rsSVkXuTtGIhH94waFNkqqP22cZn4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349115550</pqid></control><display><type>article</type><title>Radiation-Induced Variable Retention Time in Dynamic Random Access Memories</title><source>IEEE Electronic Library (IEL)</source><creator>Goiffon, Vincent ; Jay, Antoine ; Paillet, Philippe ; Bilba, Teddy ; Deladerriere, Theo ; Beaugendre, Guillaume ; Le Roch, Alexandre ; Dion, Arnaud ; Virmontois, Cedric ; Belloir, Jean-Marc ; Gaillardin, Marc</creator><creatorcontrib>Goiffon, Vincent ; Jay, Antoine ; Paillet, Philippe ; Bilba, Teddy ; Deladerriere, Theo ; Beaugendre, Guillaume ; Le Roch, Alexandre ; Dion, Arnaud ; Virmontois, Cedric ; Belloir, Jean-Marc ; Gaillardin, Marc</creatorcontrib><description>The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interface states and silicon bulk defects can be a source of VRT. It is also highlighted that radiation-induced VRT in DRAMs is very similar to the radiation-induced dark current random telegraph signal in image sensors. Both phenomena probably share the same origin, but high-magnitude electric fields seem to play an important role in VRT only. Defect structural fluctuations (without change of charge state) seem to be the root cause of the observed VRT whereas processes involving trapping and emission of charge carriers are unlikely to be a source of VRT. VRT also appears to be the most probable cause of intermittent stuck bits in irradiated DRAMs.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2019.2956293</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bulk defects ; Current carriers ; Dark current ; dark current random telegraph signal (DC-RTS) ; DDR3 low voltage (DDR3L) ; defect structural fluctuation ; displacement damage dose ; double data rate 3 (DDR3) ; Dynamic random access memory ; dynamic random access memory (DRAM) ; Electric fields ; gamma irradiation ; Gamma rays ; gamma-ray ; Image sensors ; interface states ; intermittent stuck bits (ISBs) ; Ionizing radiation ; Junctions ; leakage current ; Leakage currents ; metastable defects ; neutron ; Neutrons ; oxide defects ; Radiation effects ; Random access memory ; Retention ; Retention time ; RTS ; Silicon dioxide ; synchronous DRAM (SDRAM) ; Temperature measurement ; Time measurement ; total ionizing dose (TID) ; variable junction leakage (VJL) ; variable retention time (VRT) ; Variations</subject><ispartof>IEEE transactions on nuclear science, 2020-01, Vol.67 (1), p.234-244</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-cd31959e8c00e933e5b94f33500c89eb612e2da36d0799ac4230daf34e2f81c73</citedby><cites>FETCH-LOGICAL-c291t-cd31959e8c00e933e5b94f33500c89eb612e2da36d0799ac4230daf34e2f81c73</cites><orcidid>0000-0002-3505-0919 ; 0000-0001-7323-456X ; 0000-0002-0877-5527 ; 0000-0002-1264-0879 ; 0000-0001-7290-1551 ; 0000-0001-8701-7283 ; 0000-0002-2579-800X ; 0000-0001-5024-0115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8915832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8915832$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goiffon, Vincent</creatorcontrib><creatorcontrib>Jay, Antoine</creatorcontrib><creatorcontrib>Paillet, Philippe</creatorcontrib><creatorcontrib>Bilba, Teddy</creatorcontrib><creatorcontrib>Deladerriere, Theo</creatorcontrib><creatorcontrib>Beaugendre, Guillaume</creatorcontrib><creatorcontrib>Le Roch, Alexandre</creatorcontrib><creatorcontrib>Dion, Arnaud</creatorcontrib><creatorcontrib>Virmontois, Cedric</creatorcontrib><creatorcontrib>Belloir, Jean-Marc</creatorcontrib><creatorcontrib>Gaillardin, Marc</creatorcontrib><title>Radiation-Induced Variable Retention Time in Dynamic Random Access Memories</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interface states and silicon bulk defects can be a source of VRT. It is also highlighted that radiation-induced VRT in DRAMs is very similar to the radiation-induced dark current random telegraph signal in image sensors. Both phenomena probably share the same origin, but high-magnitude electric fields seem to play an important role in VRT only. Defect structural fluctuations (without change of charge state) seem to be the root cause of the observed VRT whereas processes involving trapping and emission of charge carriers are unlikely to be a source of VRT. VRT also appears to be the most probable cause of intermittent stuck bits in irradiated DRAMs.</description><subject>Bulk defects</subject><subject>Current carriers</subject><subject>Dark current</subject><subject>dark current random telegraph signal (DC-RTS)</subject><subject>DDR3 low voltage (DDR3L)</subject><subject>defect structural fluctuation</subject><subject>displacement damage dose</subject><subject>double data rate 3 (DDR3)</subject><subject>Dynamic random access memory</subject><subject>dynamic random access memory (DRAM)</subject><subject>Electric fields</subject><subject>gamma irradiation</subject><subject>Gamma rays</subject><subject>gamma-ray</subject><subject>Image sensors</subject><subject>interface states</subject><subject>intermittent stuck bits (ISBs)</subject><subject>Ionizing radiation</subject><subject>Junctions</subject><subject>leakage current</subject><subject>Leakage currents</subject><subject>metastable defects</subject><subject>neutron</subject><subject>Neutrons</subject><subject>oxide defects</subject><subject>Radiation effects</subject><subject>Random access memory</subject><subject>Retention</subject><subject>Retention time</subject><subject>RTS</subject><subject>Silicon dioxide</subject><subject>synchronous DRAM (SDRAM)</subject><subject>Temperature measurement</subject><subject>Time measurement</subject><subject>total ionizing dose (TID)</subject><subject>variable junction leakage (VJL)</subject><subject>variable retention time (VRT)</subject><subject>Variations</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJsmkzx1K_ilWhVq8hTWYhpbtbk_bQf--WFk_DMM87wzyM3QoYCAH4sPj4GkgQOJCohxLVGesJrU0h9Micsx6AMAWWiJfsKudV15YadI-9zV2Ibhvbppg2Yecp8B-Xoluuic9pS81hxBexJh4b_rhvXB09n7smtDUfe08583eq2xQpX7OLyq0z3Zxqn30_Py0mr8Xs82U6Gc8KL1FsCx-UQI1kPAChUqSXWFZKaQBvkJZDIUkGp4YBRojOl1JBcJUqSVZG-JHqs_vj3k1qf3eUt3bV7lLTnbRSlSi6vzV0FBwpn9qcE1V2k2Lt0t4KsAdltlNmD8rsSVkXuTtGIhH94waFNkqqP22cZn4</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Goiffon, Vincent</creator><creator>Jay, Antoine</creator><creator>Paillet, Philippe</creator><creator>Bilba, Teddy</creator><creator>Deladerriere, Theo</creator><creator>Beaugendre, Guillaume</creator><creator>Le Roch, Alexandre</creator><creator>Dion, Arnaud</creator><creator>Virmontois, Cedric</creator><creator>Belloir, Jean-Marc</creator><creator>Gaillardin, Marc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3505-0919</orcidid><orcidid>https://orcid.org/0000-0001-7323-456X</orcidid><orcidid>https://orcid.org/0000-0002-0877-5527</orcidid><orcidid>https://orcid.org/0000-0002-1264-0879</orcidid><orcidid>https://orcid.org/0000-0001-7290-1551</orcidid><orcidid>https://orcid.org/0000-0001-8701-7283</orcidid><orcidid>https://orcid.org/0000-0002-2579-800X</orcidid><orcidid>https://orcid.org/0000-0001-5024-0115</orcidid></search><sort><creationdate>202001</creationdate><title>Radiation-Induced Variable Retention Time in Dynamic Random Access Memories</title><author>Goiffon, Vincent ; Jay, Antoine ; Paillet, Philippe ; Bilba, Teddy ; Deladerriere, Theo ; Beaugendre, Guillaume ; Le Roch, Alexandre ; Dion, Arnaud ; Virmontois, Cedric ; Belloir, Jean-Marc ; Gaillardin, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-cd31959e8c00e933e5b94f33500c89eb612e2da36d0799ac4230daf34e2f81c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bulk defects</topic><topic>Current carriers</topic><topic>Dark current</topic><topic>dark current random telegraph signal (DC-RTS)</topic><topic>DDR3 low voltage (DDR3L)</topic><topic>defect structural fluctuation</topic><topic>displacement damage dose</topic><topic>double data rate 3 (DDR3)</topic><topic>Dynamic random access memory</topic><topic>dynamic random access memory (DRAM)</topic><topic>Electric fields</topic><topic>gamma irradiation</topic><topic>Gamma rays</topic><topic>gamma-ray</topic><topic>Image sensors</topic><topic>interface states</topic><topic>intermittent stuck bits (ISBs)</topic><topic>Ionizing radiation</topic><topic>Junctions</topic><topic>leakage current</topic><topic>Leakage currents</topic><topic>metastable defects</topic><topic>neutron</topic><topic>Neutrons</topic><topic>oxide defects</topic><topic>Radiation effects</topic><topic>Random access memory</topic><topic>Retention</topic><topic>Retention time</topic><topic>RTS</topic><topic>Silicon dioxide</topic><topic>synchronous DRAM (SDRAM)</topic><topic>Temperature measurement</topic><topic>Time measurement</topic><topic>total ionizing dose (TID)</topic><topic>variable junction leakage (VJL)</topic><topic>variable retention time (VRT)</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goiffon, Vincent</creatorcontrib><creatorcontrib>Jay, Antoine</creatorcontrib><creatorcontrib>Paillet, Philippe</creatorcontrib><creatorcontrib>Bilba, Teddy</creatorcontrib><creatorcontrib>Deladerriere, Theo</creatorcontrib><creatorcontrib>Beaugendre, Guillaume</creatorcontrib><creatorcontrib>Le Roch, Alexandre</creatorcontrib><creatorcontrib>Dion, Arnaud</creatorcontrib><creatorcontrib>Virmontois, Cedric</creatorcontrib><creatorcontrib>Belloir, Jean-Marc</creatorcontrib><creatorcontrib>Gaillardin, Marc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goiffon, Vincent</au><au>Jay, Antoine</au><au>Paillet, Philippe</au><au>Bilba, Teddy</au><au>Deladerriere, Theo</au><au>Beaugendre, Guillaume</au><au>Le Roch, Alexandre</au><au>Dion, Arnaud</au><au>Virmontois, Cedric</au><au>Belloir, Jean-Marc</au><au>Gaillardin, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-Induced Variable Retention Time in Dynamic Random Access Memories</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2020-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>234</spage><epage>244</epage><pages>234-244</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interface states and silicon bulk defects can be a source of VRT. It is also highlighted that radiation-induced VRT in DRAMs is very similar to the radiation-induced dark current random telegraph signal in image sensors. Both phenomena probably share the same origin, but high-magnitude electric fields seem to play an important role in VRT only. Defect structural fluctuations (without change of charge state) seem to be the root cause of the observed VRT whereas processes involving trapping and emission of charge carriers are unlikely to be a source of VRT. VRT also appears to be the most probable cause of intermittent stuck bits in irradiated DRAMs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2019.2956293</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3505-0919</orcidid><orcidid>https://orcid.org/0000-0001-7323-456X</orcidid><orcidid>https://orcid.org/0000-0002-0877-5527</orcidid><orcidid>https://orcid.org/0000-0002-1264-0879</orcidid><orcidid>https://orcid.org/0000-0001-7290-1551</orcidid><orcidid>https://orcid.org/0000-0001-8701-7283</orcidid><orcidid>https://orcid.org/0000-0002-2579-800X</orcidid><orcidid>https://orcid.org/0000-0001-5024-0115</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2020-01, Vol.67 (1), p.234-244 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_2019_2956293 |
source | IEEE Electronic Library (IEL) |
subjects | Bulk defects Current carriers Dark current dark current random telegraph signal (DC-RTS) DDR3 low voltage (DDR3L) defect structural fluctuation displacement damage dose double data rate 3 (DDR3) Dynamic random access memory dynamic random access memory (DRAM) Electric fields gamma irradiation Gamma rays gamma-ray Image sensors interface states intermittent stuck bits (ISBs) Ionizing radiation Junctions leakage current Leakage currents metastable defects neutron Neutrons oxide defects Radiation effects Random access memory Retention Retention time RTS Silicon dioxide synchronous DRAM (SDRAM) Temperature measurement Time measurement total ionizing dose (TID) variable junction leakage (VJL) variable retention time (VRT) Variations |
title | Radiation-Induced Variable Retention Time in Dynamic Random Access Memories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-Induced%20Variable%20Retention%20Time%20in%20Dynamic%20Random%20Access%20Memories&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Goiffon,%20Vincent&rft.date=2020-01&rft.volume=67&rft.issue=1&rft.spage=234&rft.epage=244&rft.pages=234-244&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2019.2956293&rft_dat=%3Cproquest_RIE%3E2349115550%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349115550&rft_id=info:pmid/&rft_ieee_id=8915832&rfr_iscdi=true |