Radiation-Induced Variable Retention Time in Dynamic Random Access Memories

The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2020-01, Vol.67 (1), p.234-244
Hauptverfasser: Goiffon, Vincent, Jay, Antoine, Paillet, Philippe, Bilba, Teddy, Deladerriere, Theo, Beaugendre, Guillaume, Le Roch, Alexandre, Dion, Arnaud, Virmontois, Cedric, Belloir, Jean-Marc, Gaillardin, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 1
container_start_page 234
container_title IEEE transactions on nuclear science
container_volume 67
creator Goiffon, Vincent
Jay, Antoine
Paillet, Philippe
Bilba, Teddy
Deladerriere, Theo
Beaugendre, Guillaume
Le Roch, Alexandre
Dion, Arnaud
Virmontois, Cedric
Belloir, Jean-Marc
Gaillardin, Marc
description The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interface states and silicon bulk defects can be a source of VRT. It is also highlighted that radiation-induced VRT in DRAMs is very similar to the radiation-induced dark current random telegraph signal in image sensors. Both phenomena probably share the same origin, but high-magnitude electric fields seem to play an important role in VRT only. Defect structural fluctuations (without change of charge state) seem to be the root cause of the observed VRT whereas processes involving trapping and emission of charge carriers are unlikely to be a source of VRT. VRT also appears to be the most probable cause of intermittent stuck bits in irradiated DRAMs.
doi_str_mv 10.1109/TNS.2019.2956293
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2019_2956293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8915832</ieee_id><sourcerecordid>2349115550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-cd31959e8c00e933e5b94f33500c89eb612e2da36d0799ac4230daf34e2f81c73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJsmkzx1K_ilWhVq8hTWYhpbtbk_bQf--WFk_DMM87wzyM3QoYCAH4sPj4GkgQOJCohxLVGesJrU0h9Micsx6AMAWWiJfsKudV15YadI-9zV2Ibhvbppg2Yecp8B-Xoluuic9pS81hxBexJh4b_rhvXB09n7smtDUfe08583eq2xQpX7OLyq0z3Zxqn30_Py0mr8Xs82U6Gc8KL1FsCx-UQI1kPAChUqSXWFZKaQBvkJZDIUkGp4YBRojOl1JBcJUqSVZG-JHqs_vj3k1qf3eUt3bV7lLTnbRSlSi6vzV0FBwpn9qcE1V2k2Lt0t4KsAdltlNmD8rsSVkXuTtGIhH94waFNkqqP22cZn4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349115550</pqid></control><display><type>article</type><title>Radiation-Induced Variable Retention Time in Dynamic Random Access Memories</title><source>IEEE Electronic Library (IEL)</source><creator>Goiffon, Vincent ; Jay, Antoine ; Paillet, Philippe ; Bilba, Teddy ; Deladerriere, Theo ; Beaugendre, Guillaume ; Le Roch, Alexandre ; Dion, Arnaud ; Virmontois, Cedric ; Belloir, Jean-Marc ; Gaillardin, Marc</creator><creatorcontrib>Goiffon, Vincent ; Jay, Antoine ; Paillet, Philippe ; Bilba, Teddy ; Deladerriere, Theo ; Beaugendre, Guillaume ; Le Roch, Alexandre ; Dion, Arnaud ; Virmontois, Cedric ; Belloir, Jean-Marc ; Gaillardin, Marc</creatorcontrib><description>The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interface states and silicon bulk defects can be a source of VRT. It is also highlighted that radiation-induced VRT in DRAMs is very similar to the radiation-induced dark current random telegraph signal in image sensors. Both phenomena probably share the same origin, but high-magnitude electric fields seem to play an important role in VRT only. Defect structural fluctuations (without change of charge state) seem to be the root cause of the observed VRT whereas processes involving trapping and emission of charge carriers are unlikely to be a source of VRT. VRT also appears to be the most probable cause of intermittent stuck bits in irradiated DRAMs.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2019.2956293</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bulk defects ; Current carriers ; Dark current ; dark current random telegraph signal (DC-RTS) ; DDR3 low voltage (DDR3L) ; defect structural fluctuation ; displacement damage dose ; double data rate 3 (DDR3) ; Dynamic random access memory ; dynamic random access memory (DRAM) ; Electric fields ; gamma irradiation ; Gamma rays ; gamma-ray ; Image sensors ; interface states ; intermittent stuck bits (ISBs) ; Ionizing radiation ; Junctions ; leakage current ; Leakage currents ; metastable defects ; neutron ; Neutrons ; oxide defects ; Radiation effects ; Random access memory ; Retention ; Retention time ; RTS ; Silicon dioxide ; synchronous DRAM (SDRAM) ; Temperature measurement ; Time measurement ; total ionizing dose (TID) ; variable junction leakage (VJL) ; variable retention time (VRT) ; Variations</subject><ispartof>IEEE transactions on nuclear science, 2020-01, Vol.67 (1), p.234-244</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-cd31959e8c00e933e5b94f33500c89eb612e2da36d0799ac4230daf34e2f81c73</citedby><cites>FETCH-LOGICAL-c291t-cd31959e8c00e933e5b94f33500c89eb612e2da36d0799ac4230daf34e2f81c73</cites><orcidid>0000-0002-3505-0919 ; 0000-0001-7323-456X ; 0000-0002-0877-5527 ; 0000-0002-1264-0879 ; 0000-0001-7290-1551 ; 0000-0001-8701-7283 ; 0000-0002-2579-800X ; 0000-0001-5024-0115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8915832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8915832$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goiffon, Vincent</creatorcontrib><creatorcontrib>Jay, Antoine</creatorcontrib><creatorcontrib>Paillet, Philippe</creatorcontrib><creatorcontrib>Bilba, Teddy</creatorcontrib><creatorcontrib>Deladerriere, Theo</creatorcontrib><creatorcontrib>Beaugendre, Guillaume</creatorcontrib><creatorcontrib>Le Roch, Alexandre</creatorcontrib><creatorcontrib>Dion, Arnaud</creatorcontrib><creatorcontrib>Virmontois, Cedric</creatorcontrib><creatorcontrib>Belloir, Jean-Marc</creatorcontrib><creatorcontrib>Gaillardin, Marc</creatorcontrib><title>Radiation-Induced Variable Retention Time in Dynamic Random Access Memories</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interface states and silicon bulk defects can be a source of VRT. It is also highlighted that radiation-induced VRT in DRAMs is very similar to the radiation-induced dark current random telegraph signal in image sensors. Both phenomena probably share the same origin, but high-magnitude electric fields seem to play an important role in VRT only. Defect structural fluctuations (without change of charge state) seem to be the root cause of the observed VRT whereas processes involving trapping and emission of charge carriers are unlikely to be a source of VRT. VRT also appears to be the most probable cause of intermittent stuck bits in irradiated DRAMs.</description><subject>Bulk defects</subject><subject>Current carriers</subject><subject>Dark current</subject><subject>dark current random telegraph signal (DC-RTS)</subject><subject>DDR3 low voltage (DDR3L)</subject><subject>defect structural fluctuation</subject><subject>displacement damage dose</subject><subject>double data rate 3 (DDR3)</subject><subject>Dynamic random access memory</subject><subject>dynamic random access memory (DRAM)</subject><subject>Electric fields</subject><subject>gamma irradiation</subject><subject>Gamma rays</subject><subject>gamma-ray</subject><subject>Image sensors</subject><subject>interface states</subject><subject>intermittent stuck bits (ISBs)</subject><subject>Ionizing radiation</subject><subject>Junctions</subject><subject>leakage current</subject><subject>Leakage currents</subject><subject>metastable defects</subject><subject>neutron</subject><subject>Neutrons</subject><subject>oxide defects</subject><subject>Radiation effects</subject><subject>Random access memory</subject><subject>Retention</subject><subject>Retention time</subject><subject>RTS</subject><subject>Silicon dioxide</subject><subject>synchronous DRAM (SDRAM)</subject><subject>Temperature measurement</subject><subject>Time measurement</subject><subject>total ionizing dose (TID)</subject><subject>variable junction leakage (VJL)</subject><subject>variable retention time (VRT)</subject><subject>Variations</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJsmkzx1K_ilWhVq8hTWYhpbtbk_bQf--WFk_DMM87wzyM3QoYCAH4sPj4GkgQOJCohxLVGesJrU0h9Micsx6AMAWWiJfsKudV15YadI-9zV2Ibhvbppg2Yecp8B-Xoluuic9pS81hxBexJh4b_rhvXB09n7smtDUfe08583eq2xQpX7OLyq0z3Zxqn30_Py0mr8Xs82U6Gc8KL1FsCx-UQI1kPAChUqSXWFZKaQBvkJZDIUkGp4YBRojOl1JBcJUqSVZG-JHqs_vj3k1qf3eUt3bV7lLTnbRSlSi6vzV0FBwpn9qcE1V2k2Lt0t4KsAdltlNmD8rsSVkXuTtGIhH94waFNkqqP22cZn4</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Goiffon, Vincent</creator><creator>Jay, Antoine</creator><creator>Paillet, Philippe</creator><creator>Bilba, Teddy</creator><creator>Deladerriere, Theo</creator><creator>Beaugendre, Guillaume</creator><creator>Le Roch, Alexandre</creator><creator>Dion, Arnaud</creator><creator>Virmontois, Cedric</creator><creator>Belloir, Jean-Marc</creator><creator>Gaillardin, Marc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3505-0919</orcidid><orcidid>https://orcid.org/0000-0001-7323-456X</orcidid><orcidid>https://orcid.org/0000-0002-0877-5527</orcidid><orcidid>https://orcid.org/0000-0002-1264-0879</orcidid><orcidid>https://orcid.org/0000-0001-7290-1551</orcidid><orcidid>https://orcid.org/0000-0001-8701-7283</orcidid><orcidid>https://orcid.org/0000-0002-2579-800X</orcidid><orcidid>https://orcid.org/0000-0001-5024-0115</orcidid></search><sort><creationdate>202001</creationdate><title>Radiation-Induced Variable Retention Time in Dynamic Random Access Memories</title><author>Goiffon, Vincent ; Jay, Antoine ; Paillet, Philippe ; Bilba, Teddy ; Deladerriere, Theo ; Beaugendre, Guillaume ; Le Roch, Alexandre ; Dion, Arnaud ; Virmontois, Cedric ; Belloir, Jean-Marc ; Gaillardin, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-cd31959e8c00e933e5b94f33500c89eb612e2da36d0799ac4230daf34e2f81c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bulk defects</topic><topic>Current carriers</topic><topic>Dark current</topic><topic>dark current random telegraph signal (DC-RTS)</topic><topic>DDR3 low voltage (DDR3L)</topic><topic>defect structural fluctuation</topic><topic>displacement damage dose</topic><topic>double data rate 3 (DDR3)</topic><topic>Dynamic random access memory</topic><topic>dynamic random access memory (DRAM)</topic><topic>Electric fields</topic><topic>gamma irradiation</topic><topic>Gamma rays</topic><topic>gamma-ray</topic><topic>Image sensors</topic><topic>interface states</topic><topic>intermittent stuck bits (ISBs)</topic><topic>Ionizing radiation</topic><topic>Junctions</topic><topic>leakage current</topic><topic>Leakage currents</topic><topic>metastable defects</topic><topic>neutron</topic><topic>Neutrons</topic><topic>oxide defects</topic><topic>Radiation effects</topic><topic>Random access memory</topic><topic>Retention</topic><topic>Retention time</topic><topic>RTS</topic><topic>Silicon dioxide</topic><topic>synchronous DRAM (SDRAM)</topic><topic>Temperature measurement</topic><topic>Time measurement</topic><topic>total ionizing dose (TID)</topic><topic>variable junction leakage (VJL)</topic><topic>variable retention time (VRT)</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goiffon, Vincent</creatorcontrib><creatorcontrib>Jay, Antoine</creatorcontrib><creatorcontrib>Paillet, Philippe</creatorcontrib><creatorcontrib>Bilba, Teddy</creatorcontrib><creatorcontrib>Deladerriere, Theo</creatorcontrib><creatorcontrib>Beaugendre, Guillaume</creatorcontrib><creatorcontrib>Le Roch, Alexandre</creatorcontrib><creatorcontrib>Dion, Arnaud</creatorcontrib><creatorcontrib>Virmontois, Cedric</creatorcontrib><creatorcontrib>Belloir, Jean-Marc</creatorcontrib><creatorcontrib>Gaillardin, Marc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goiffon, Vincent</au><au>Jay, Antoine</au><au>Paillet, Philippe</au><au>Bilba, Teddy</au><au>Deladerriere, Theo</au><au>Beaugendre, Guillaume</au><au>Le Roch, Alexandre</au><au>Dion, Arnaud</au><au>Virmontois, Cedric</au><au>Belloir, Jean-Marc</au><au>Gaillardin, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-Induced Variable Retention Time in Dynamic Random Access Memories</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2020-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>234</spage><epage>244</epage><pages>234-244</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The effect of gamma-ray and neutron radiations on the variable retention time (VRT) phenomenon occurring in dynamic random access memory (DRAM) is studied. It is shown that both ionizing radiation and nonionizing radiation induce VRT behaviors in DRAM cells. It demonstrates that both Si/SiO 2 interface states and silicon bulk defects can be a source of VRT. It is also highlighted that radiation-induced VRT in DRAMs is very similar to the radiation-induced dark current random telegraph signal in image sensors. Both phenomena probably share the same origin, but high-magnitude electric fields seem to play an important role in VRT only. Defect structural fluctuations (without change of charge state) seem to be the root cause of the observed VRT whereas processes involving trapping and emission of charge carriers are unlikely to be a source of VRT. VRT also appears to be the most probable cause of intermittent stuck bits in irradiated DRAMs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2019.2956293</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3505-0919</orcidid><orcidid>https://orcid.org/0000-0001-7323-456X</orcidid><orcidid>https://orcid.org/0000-0002-0877-5527</orcidid><orcidid>https://orcid.org/0000-0002-1264-0879</orcidid><orcidid>https://orcid.org/0000-0001-7290-1551</orcidid><orcidid>https://orcid.org/0000-0001-8701-7283</orcidid><orcidid>https://orcid.org/0000-0002-2579-800X</orcidid><orcidid>https://orcid.org/0000-0001-5024-0115</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2020-01, Vol.67 (1), p.234-244
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2019_2956293
source IEEE Electronic Library (IEL)
subjects Bulk defects
Current carriers
Dark current
dark current random telegraph signal (DC-RTS)
DDR3 low voltage (DDR3L)
defect structural fluctuation
displacement damage dose
double data rate 3 (DDR3)
Dynamic random access memory
dynamic random access memory (DRAM)
Electric fields
gamma irradiation
Gamma rays
gamma-ray
Image sensors
interface states
intermittent stuck bits (ISBs)
Ionizing radiation
Junctions
leakage current
Leakage currents
metastable defects
neutron
Neutrons
oxide defects
Radiation effects
Random access memory
Retention
Retention time
RTS
Silicon dioxide
synchronous DRAM (SDRAM)
Temperature measurement
Time measurement
total ionizing dose (TID)
variable junction leakage (VJL)
variable retention time (VRT)
Variations
title Radiation-Induced Variable Retention Time in Dynamic Random Access Memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-Induced%20Variable%20Retention%20Time%20in%20Dynamic%20Random%20Access%20Memories&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Goiffon,%20Vincent&rft.date=2020-01&rft.volume=67&rft.issue=1&rft.spage=234&rft.epage=244&rft.pages=234-244&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2019.2956293&rft_dat=%3Cproquest_RIE%3E2349115550%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349115550&rft_id=info:pmid/&rft_ieee_id=8915832&rfr_iscdi=true