A 65 nm Temporally Hardened Flip-Flop Circuit

A guard-gate based flip-flop circuit temporally hardened against single-event effects is presented in this paper. Compared to several existed techniques, the organization of components inside the proposed design allows the improved performance- only one \tau (the maximum width of a single-event tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2016-12, Vol.63 (6), p.2934-2940
Hauptverfasser: Li, Y.-Q, Wang, H.-B, Rui Liu, Li Chen, Nofal, Issam, Chen, Q.-Y, He, A.-L, Gang Guo, Baeg, Sang H., Shi-Jie Wen, Wong, Richard, Qiong Wu, Mo Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2940
container_issue 6
container_start_page 2934
container_title IEEE transactions on nuclear science
container_volume 63
creator Li, Y.-Q
Wang, H.-B
Rui Liu
Li Chen
Nofal, Issam
Chen, Q.-Y
He, A.-L
Gang Guo
Baeg, Sang H.
Shi-Jie Wen
Wong, Richard
Qiong Wu
Mo Chen
description A guard-gate based flip-flop circuit temporally hardened against single-event effects is presented in this paper. Compared to several existed techniques, the organization of components inside the proposed design allows the improved performance- only one \tau (the maximum width of a single-event transient (SET) to tolerate) is added into the setup time. A previously reported low-power delay element is applied, which helps make the proposed design power-efficient. The proposed design was implemented in a 65 nm CMOS bulk technology. Alpha and heavy-ions radiation experiments were performed to characterize its soft-error rates. Experimental results show that the proposed design presents no error with LETs up to 37.3 MeV-cm 2 /mg. Simulation results from the TFIT further validate the experimental results.
doi_str_mv 10.1109/TNS.2016.2608911
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2016_2608911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7565582</ieee_id><sourcerecordid>1850229269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-326b0fb61e66b5d567101b79f9ab4df970598916f77d052334168646a9133ea83</originalsourceid><addsrcrecordid>eNo9kDFrwzAQRkVpoWnavdDF0FnpnWSdpDGEOimEdmg6CzmWwcGJXTkZ8u-r4NDpOHjfd8dj7Blhhgj2bfP5PROANBMExiLesAkqZTgqbW7ZBAANt7m19-xhGHZpzRWoCePzjFR22GebsO-76Nv2nK18rMIhVFnRNj0v2q7PFk3cnprjI7urfTuEp-ucsp_ifbNY8fXX8mMxX_NtLvSRS0El1CVhICpVpUgjYKltbX2ZV7XVoGz6kWqtK1BCyhzJUE7eopTBGzllr2NvH7vfUxiObted4iGddGgUCGEF2UTBSG1jNwwx1K6Pzd7Hs0NwFykuSXEXKe4qJUVexkgTQvjHtaKkSsg_NM1ZcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850229269</pqid></control><display><type>article</type><title>A 65 nm Temporally Hardened Flip-Flop Circuit</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Y.-Q ; Wang, H.-B ; Rui Liu ; Li Chen ; Nofal, Issam ; Chen, Q.-Y ; He, A.-L ; Gang Guo ; Baeg, Sang H. ; Shi-Jie Wen ; Wong, Richard ; Qiong Wu ; Mo Chen</creator><creatorcontrib>Li, Y.-Q ; Wang, H.-B ; Rui Liu ; Li Chen ; Nofal, Issam ; Chen, Q.-Y ; He, A.-L ; Gang Guo ; Baeg, Sang H. ; Shi-Jie Wen ; Wong, Richard ; Qiong Wu ; Mo Chen</creatorcontrib><description>A guard-gate based flip-flop circuit temporally hardened against single-event effects is presented in this paper. Compared to several existed techniques, the organization of components inside the proposed design allows the improved performance- only one \tau (the maximum width of a single-event transient (SET) to tolerate) is added into the setup time. A previously reported low-power delay element is applied, which helps make the proposed design power-efficient. The proposed design was implemented in a 65 nm CMOS bulk technology. Alpha and heavy-ions radiation experiments were performed to characterize its soft-error rates. Experimental results show that the proposed design presents no error with LETs up to 37.3 MeV-cm 2 /mg. Simulation results from the TFIT further validate the experimental results.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2016.2608911</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alpha rays ; Circuit faults ; Circuits ; Design ; Flip-flop ; Flip-flops ; Latches ; Radiation hardening (electronics) ; SET ; SEU ; Single Event Effects ; Single event upsets ; Soft errors ; temporal hardening ; Transient analysis ; α Radiation</subject><ispartof>IEEE transactions on nuclear science, 2016-12, Vol.63 (6), p.2934-2940</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-326b0fb61e66b5d567101b79f9ab4df970598916f77d052334168646a9133ea83</citedby><cites>FETCH-LOGICAL-c427t-326b0fb61e66b5d567101b79f9ab4df970598916f77d052334168646a9133ea83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7565582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7565582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Y.-Q</creatorcontrib><creatorcontrib>Wang, H.-B</creatorcontrib><creatorcontrib>Rui Liu</creatorcontrib><creatorcontrib>Li Chen</creatorcontrib><creatorcontrib>Nofal, Issam</creatorcontrib><creatorcontrib>Chen, Q.-Y</creatorcontrib><creatorcontrib>He, A.-L</creatorcontrib><creatorcontrib>Gang Guo</creatorcontrib><creatorcontrib>Baeg, Sang H.</creatorcontrib><creatorcontrib>Shi-Jie Wen</creatorcontrib><creatorcontrib>Wong, Richard</creatorcontrib><creatorcontrib>Qiong Wu</creatorcontrib><creatorcontrib>Mo Chen</creatorcontrib><title>A 65 nm Temporally Hardened Flip-Flop Circuit</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>A guard-gate based flip-flop circuit temporally hardened against single-event effects is presented in this paper. Compared to several existed techniques, the organization of components inside the proposed design allows the improved performance- only one \tau (the maximum width of a single-event transient (SET) to tolerate) is added into the setup time. A previously reported low-power delay element is applied, which helps make the proposed design power-efficient. The proposed design was implemented in a 65 nm CMOS bulk technology. Alpha and heavy-ions radiation experiments were performed to characterize its soft-error rates. Experimental results show that the proposed design presents no error with LETs up to 37.3 MeV-cm 2 /mg. Simulation results from the TFIT further validate the experimental results.</description><subject>Alpha rays</subject><subject>Circuit faults</subject><subject>Circuits</subject><subject>Design</subject><subject>Flip-flop</subject><subject>Flip-flops</subject><subject>Latches</subject><subject>Radiation hardening (electronics)</subject><subject>SET</subject><subject>SEU</subject><subject>Single Event Effects</subject><subject>Single event upsets</subject><subject>Soft errors</subject><subject>temporal hardening</subject><subject>Transient analysis</subject><subject>α Radiation</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFrwzAQRkVpoWnavdDF0FnpnWSdpDGEOimEdmg6CzmWwcGJXTkZ8u-r4NDpOHjfd8dj7Blhhgj2bfP5PROANBMExiLesAkqZTgqbW7ZBAANt7m19-xhGHZpzRWoCePzjFR22GebsO-76Nv2nK18rMIhVFnRNj0v2q7PFk3cnprjI7urfTuEp-ucsp_ifbNY8fXX8mMxX_NtLvSRS0El1CVhICpVpUgjYKltbX2ZV7XVoGz6kWqtK1BCyhzJUE7eopTBGzllr2NvH7vfUxiObted4iGddGgUCGEF2UTBSG1jNwwx1K6Pzd7Hs0NwFykuSXEXKe4qJUVexkgTQvjHtaKkSsg_NM1ZcA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Li, Y.-Q</creator><creator>Wang, H.-B</creator><creator>Rui Liu</creator><creator>Li Chen</creator><creator>Nofal, Issam</creator><creator>Chen, Q.-Y</creator><creator>He, A.-L</creator><creator>Gang Guo</creator><creator>Baeg, Sang H.</creator><creator>Shi-Jie Wen</creator><creator>Wong, Richard</creator><creator>Qiong Wu</creator><creator>Mo Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20161201</creationdate><title>A 65 nm Temporally Hardened Flip-Flop Circuit</title><author>Li, Y.-Q ; Wang, H.-B ; Rui Liu ; Li Chen ; Nofal, Issam ; Chen, Q.-Y ; He, A.-L ; Gang Guo ; Baeg, Sang H. ; Shi-Jie Wen ; Wong, Richard ; Qiong Wu ; Mo Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-326b0fb61e66b5d567101b79f9ab4df970598916f77d052334168646a9133ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alpha rays</topic><topic>Circuit faults</topic><topic>Circuits</topic><topic>Design</topic><topic>Flip-flop</topic><topic>Flip-flops</topic><topic>Latches</topic><topic>Radiation hardening (electronics)</topic><topic>SET</topic><topic>SEU</topic><topic>Single Event Effects</topic><topic>Single event upsets</topic><topic>Soft errors</topic><topic>temporal hardening</topic><topic>Transient analysis</topic><topic>α Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y.-Q</creatorcontrib><creatorcontrib>Wang, H.-B</creatorcontrib><creatorcontrib>Rui Liu</creatorcontrib><creatorcontrib>Li Chen</creatorcontrib><creatorcontrib>Nofal, Issam</creatorcontrib><creatorcontrib>Chen, Q.-Y</creatorcontrib><creatorcontrib>He, A.-L</creatorcontrib><creatorcontrib>Gang Guo</creatorcontrib><creatorcontrib>Baeg, Sang H.</creatorcontrib><creatorcontrib>Shi-Jie Wen</creatorcontrib><creatorcontrib>Wong, Richard</creatorcontrib><creatorcontrib>Qiong Wu</creatorcontrib><creatorcontrib>Mo Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Y.-Q</au><au>Wang, H.-B</au><au>Rui Liu</au><au>Li Chen</au><au>Nofal, Issam</au><au>Chen, Q.-Y</au><au>He, A.-L</au><au>Gang Guo</au><au>Baeg, Sang H.</au><au>Shi-Jie Wen</au><au>Wong, Richard</au><au>Qiong Wu</au><au>Mo Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 65 nm Temporally Hardened Flip-Flop Circuit</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>63</volume><issue>6</issue><spage>2934</spage><epage>2940</epage><pages>2934-2940</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A guard-gate based flip-flop circuit temporally hardened against single-event effects is presented in this paper. Compared to several existed techniques, the organization of components inside the proposed design allows the improved performance- only one \tau (the maximum width of a single-event transient (SET) to tolerate) is added into the setup time. A previously reported low-power delay element is applied, which helps make the proposed design power-efficient. The proposed design was implemented in a 65 nm CMOS bulk technology. Alpha and heavy-ions radiation experiments were performed to characterize its soft-error rates. Experimental results show that the proposed design presents no error with LETs up to 37.3 MeV-cm 2 /mg. Simulation results from the TFIT further validate the experimental results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2016.2608911</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2016-12, Vol.63 (6), p.2934-2940
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2016_2608911
source IEEE Electronic Library (IEL)
subjects Alpha rays
Circuit faults
Circuits
Design
Flip-flop
Flip-flops
Latches
Radiation hardening (electronics)
SET
SEU
Single Event Effects
Single event upsets
Soft errors
temporal hardening
Transient analysis
α Radiation
title A 65 nm Temporally Hardened Flip-Flop Circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2065%20nm%20Temporally%20Hardened%20Flip-Flop%20Circuit&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Li,%20Y.-Q&rft.date=2016-12-01&rft.volume=63&rft.issue=6&rft.spage=2934&rft.epage=2940&rft.pages=2934-2940&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2016.2608911&rft_dat=%3Cproquest_RIE%3E1850229269%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850229269&rft_id=info:pmid/&rft_ieee_id=7565582&rfr_iscdi=true