Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs
InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly af...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2015-12, Vol.62 (6), p.2888-2893 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2893 |
---|---|
container_issue | 6 |
container_start_page | 2888 |
container_title | IEEE transactions on nuclear science |
container_volume | 62 |
creator | Shufeng Ren Mengwei Si Kai Ni Xin Wan Jin Chen Sungjae Chang Xiao Sun En Xia Zhang Reed, Robert A. Fleetwood, Daniel M. Peide Ye Cui, Sharon Ma, T. P. |
description | InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly affect NW device radiation hardness. Low-frequency noise measurements are carried out to probe near-interfacial oxide-trap (border-trap) densities, and TCAD simulations are performed to assist in understanding the charge trapping in NW channel devices with high-k gate dielectrics. Optimized device structures exhibit high radiation tolerance. |
doi_str_mv | 10.1109/TNS.2015.2497090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2015_2497090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7348786</ieee_id><sourcerecordid>3899049031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e7f82951853e4e635666bbbb3d280aa0250e6f75101194668fa955d457c8a6a53</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxhdRsD7ugpcFL_aQuptk9nEMtcaA1kNTPIY1mdiUuNHdFF__vCktzmWYme_7Bn6EXHA24Zzpm3y-mISMwySMtWSaHZARB1ABB6kOyYgxrgIda31MTrxfD2MMDEbkN-9609Kss81PY1_pbeeRXufZ7ZjO6hrL3tPG0tlX7_AN22-6KE2LFV22vTNBvhpu05WxFls6N7b7bNzgnj-PaWp6DJK2DRLXbWxFr9MkGdPMpibx9PFpcTfL_Rk5qk3r8XzfT8lyWE_vg4enNJsmD0EZat4HKGsVauAKIoxRRCCEeBkqqkLFjGEhMBS1BM4417EQqjYaoIpBlsoIA9EpudrlvrvuY4O-L9bdxtnhZcElMKYA5FbFdqrSdd47rIt317wZ911wVmwRFwPiYou42CMeLJc7S4OI_3IZxUoqEf0BccZzhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750085575</pqid></control><display><type>article</type><title>Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Shufeng Ren ; Mengwei Si ; Kai Ni ; Xin Wan ; Jin Chen ; Sungjae Chang ; Xiao Sun ; En Xia Zhang ; Reed, Robert A. ; Fleetwood, Daniel M. ; Peide Ye ; Cui, Sharon ; Ma, T. P.</creator><creatorcontrib>Shufeng Ren ; Mengwei Si ; Kai Ni ; Xin Wan ; Jin Chen ; Sungjae Chang ; Xiao Sun ; En Xia Zhang ; Reed, Robert A. ; Fleetwood, Daniel M. ; Peide Ye ; Cui, Sharon ; Ma, T. P.</creatorcontrib><description>InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly affect NW device radiation hardness. Low-frequency noise measurements are carried out to probe near-interfacial oxide-trap (border-trap) densities, and TCAD simulations are performed to assist in understanding the charge trapping in NW channel devices with high-k gate dielectrics. Optimized device structures exhibit high radiation tolerance.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2015.2497090</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1/f noise ; border traps ; gate-all-around ; high-k dielectric ; High-K gate dielectrics ; Indium gallium arsenide ; InGaAs ; MOSFET ; nanowire ; Nanowires ; oxide traps ; TCAD simulation</subject><ispartof>IEEE transactions on nuclear science, 2015-12, Vol.62 (6), p.2888-2893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e7f82951853e4e635666bbbb3d280aa0250e6f75101194668fa955d457c8a6a53</citedby><cites>FETCH-LOGICAL-c291t-e7f82951853e4e635666bbbb3d280aa0250e6f75101194668fa955d457c8a6a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7348786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7348786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shufeng Ren</creatorcontrib><creatorcontrib>Mengwei Si</creatorcontrib><creatorcontrib>Kai Ni</creatorcontrib><creatorcontrib>Xin Wan</creatorcontrib><creatorcontrib>Jin Chen</creatorcontrib><creatorcontrib>Sungjae Chang</creatorcontrib><creatorcontrib>Xiao Sun</creatorcontrib><creatorcontrib>En Xia Zhang</creatorcontrib><creatorcontrib>Reed, Robert A.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Peide Ye</creatorcontrib><creatorcontrib>Cui, Sharon</creatorcontrib><creatorcontrib>Ma, T. P.</creatorcontrib><title>Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly affect NW device radiation hardness. Low-frequency noise measurements are carried out to probe near-interfacial oxide-trap (border-trap) densities, and TCAD simulations are performed to assist in understanding the charge trapping in NW channel devices with high-k gate dielectrics. Optimized device structures exhibit high radiation tolerance.</description><subject>1/f noise</subject><subject>border traps</subject><subject>gate-all-around</subject><subject>high-k dielectric</subject><subject>High-K gate dielectrics</subject><subject>Indium gallium arsenide</subject><subject>InGaAs</subject><subject>MOSFET</subject><subject>nanowire</subject><subject>Nanowires</subject><subject>oxide traps</subject><subject>TCAD simulation</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLw0AQxhdRsD7ugpcFL_aQuptk9nEMtcaA1kNTPIY1mdiUuNHdFF__vCktzmWYme_7Bn6EXHA24Zzpm3y-mISMwySMtWSaHZARB1ABB6kOyYgxrgIda31MTrxfD2MMDEbkN-9609Kss81PY1_pbeeRXufZ7ZjO6hrL3tPG0tlX7_AN22-6KE2LFV22vTNBvhpu05WxFls6N7b7bNzgnj-PaWp6DJK2DRLXbWxFr9MkGdPMpibx9PFpcTfL_Rk5qk3r8XzfT8lyWE_vg4enNJsmD0EZat4HKGsVauAKIoxRRCCEeBkqqkLFjGEhMBS1BM4417EQqjYaoIpBlsoIA9EpudrlvrvuY4O-L9bdxtnhZcElMKYA5FbFdqrSdd47rIt317wZ911wVmwRFwPiYou42CMeLJc7S4OI_3IZxUoqEf0BccZzhg</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Shufeng Ren</creator><creator>Mengwei Si</creator><creator>Kai Ni</creator><creator>Xin Wan</creator><creator>Jin Chen</creator><creator>Sungjae Chang</creator><creator>Xiao Sun</creator><creator>En Xia Zhang</creator><creator>Reed, Robert A.</creator><creator>Fleetwood, Daniel M.</creator><creator>Peide Ye</creator><creator>Cui, Sharon</creator><creator>Ma, T. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201512</creationdate><title>Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs</title><author>Shufeng Ren ; Mengwei Si ; Kai Ni ; Xin Wan ; Jin Chen ; Sungjae Chang ; Xiao Sun ; En Xia Zhang ; Reed, Robert A. ; Fleetwood, Daniel M. ; Peide Ye ; Cui, Sharon ; Ma, T. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e7f82951853e4e635666bbbb3d280aa0250e6f75101194668fa955d457c8a6a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1/f noise</topic><topic>border traps</topic><topic>gate-all-around</topic><topic>high-k dielectric</topic><topic>High-K gate dielectrics</topic><topic>Indium gallium arsenide</topic><topic>InGaAs</topic><topic>MOSFET</topic><topic>nanowire</topic><topic>Nanowires</topic><topic>oxide traps</topic><topic>TCAD simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shufeng Ren</creatorcontrib><creatorcontrib>Mengwei Si</creatorcontrib><creatorcontrib>Kai Ni</creatorcontrib><creatorcontrib>Xin Wan</creatorcontrib><creatorcontrib>Jin Chen</creatorcontrib><creatorcontrib>Sungjae Chang</creatorcontrib><creatorcontrib>Xiao Sun</creatorcontrib><creatorcontrib>En Xia Zhang</creatorcontrib><creatorcontrib>Reed, Robert A.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Peide Ye</creatorcontrib><creatorcontrib>Cui, Sharon</creatorcontrib><creatorcontrib>Ma, T. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shufeng Ren</au><au>Mengwei Si</au><au>Kai Ni</au><au>Xin Wan</au><au>Jin Chen</au><au>Sungjae Chang</au><au>Xiao Sun</au><au>En Xia Zhang</au><au>Reed, Robert A.</au><au>Fleetwood, Daniel M.</au><au>Peide Ye</au><au>Cui, Sharon</au><au>Ma, T. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2015-12</date><risdate>2015</risdate><volume>62</volume><issue>6</issue><spage>2888</spage><epage>2893</epage><pages>2888-2893</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly affect NW device radiation hardness. Low-frequency noise measurements are carried out to probe near-interfacial oxide-trap (border-trap) densities, and TCAD simulations are performed to assist in understanding the charge trapping in NW channel devices with high-k gate dielectrics. Optimized device structures exhibit high radiation tolerance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2015.2497090</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2015-12, Vol.62 (6), p.2888-2893 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_2015_2497090 |
source | IEEE Electronic Library (IEL) |
subjects | 1/f noise border traps gate-all-around high-k dielectric High-K gate dielectrics Indium gallium arsenide InGaAs MOSFET nanowire Nanowires oxide traps TCAD simulation |
title | Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Ionizing%20Dose%20(TID)%20Effects%20in%20Extremely%20Scaled%20Ultra-Thin%20Channel%20Nanowire%20(NW)%20Gate-All-Around%20(GAA)%20InGaAs%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Shufeng%20Ren&rft.date=2015-12&rft.volume=62&rft.issue=6&rft.spage=2888&rft.epage=2893&rft.pages=2888-2893&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2015.2497090&rft_dat=%3Cproquest_RIE%3E3899049031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750085575&rft_id=info:pmid/&rft_ieee_id=7348786&rfr_iscdi=true |