Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs

InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly af...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2015-12, Vol.62 (6), p.2888-2893
Hauptverfasser: Shufeng Ren, Mengwei Si, Kai Ni, Xin Wan, Jin Chen, Sungjae Chang, Xiao Sun, En Xia Zhang, Reed, Robert A., Fleetwood, Daniel M., Peide Ye, Cui, Sharon, Ma, T. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2893
container_issue 6
container_start_page 2888
container_title IEEE transactions on nuclear science
container_volume 62
creator Shufeng Ren
Mengwei Si
Kai Ni
Xin Wan
Jin Chen
Sungjae Chang
Xiao Sun
En Xia Zhang
Reed, Robert A.
Fleetwood, Daniel M.
Peide Ye
Cui, Sharon
Ma, T. P.
description InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly affect NW device radiation hardness. Low-frequency noise measurements are carried out to probe near-interfacial oxide-trap (border-trap) densities, and TCAD simulations are performed to assist in understanding the charge trapping in NW channel devices with high-k gate dielectrics. Optimized device structures exhibit high radiation tolerance.
doi_str_mv 10.1109/TNS.2015.2497090
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2015_2497090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7348786</ieee_id><sourcerecordid>3899049031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e7f82951853e4e635666bbbb3d280aa0250e6f75101194668fa955d457c8a6a53</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxhdRsD7ugpcFL_aQuptk9nEMtcaA1kNTPIY1mdiUuNHdFF__vCktzmWYme_7Bn6EXHA24Zzpm3y-mISMwySMtWSaHZARB1ABB6kOyYgxrgIda31MTrxfD2MMDEbkN-9609Kss81PY1_pbeeRXufZ7ZjO6hrL3tPG0tlX7_AN22-6KE2LFV22vTNBvhpu05WxFls6N7b7bNzgnj-PaWp6DJK2DRLXbWxFr9MkGdPMpibx9PFpcTfL_Rk5qk3r8XzfT8lyWE_vg4enNJsmD0EZat4HKGsVauAKIoxRRCCEeBkqqkLFjGEhMBS1BM4417EQqjYaoIpBlsoIA9EpudrlvrvuY4O-L9bdxtnhZcElMKYA5FbFdqrSdd47rIt317wZ911wVmwRFwPiYou42CMeLJc7S4OI_3IZxUoqEf0BccZzhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750085575</pqid></control><display><type>article</type><title>Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Shufeng Ren ; Mengwei Si ; Kai Ni ; Xin Wan ; Jin Chen ; Sungjae Chang ; Xiao Sun ; En Xia Zhang ; Reed, Robert A. ; Fleetwood, Daniel M. ; Peide Ye ; Cui, Sharon ; Ma, T. P.</creator><creatorcontrib>Shufeng Ren ; Mengwei Si ; Kai Ni ; Xin Wan ; Jin Chen ; Sungjae Chang ; Xiao Sun ; En Xia Zhang ; Reed, Robert A. ; Fleetwood, Daniel M. ; Peide Ye ; Cui, Sharon ; Ma, T. P.</creatorcontrib><description>InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly affect NW device radiation hardness. Low-frequency noise measurements are carried out to probe near-interfacial oxide-trap (border-trap) densities, and TCAD simulations are performed to assist in understanding the charge trapping in NW channel devices with high-k gate dielectrics. Optimized device structures exhibit high radiation tolerance.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2015.2497090</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1/f noise ; border traps ; gate-all-around ; high-k dielectric ; High-K gate dielectrics ; Indium gallium arsenide ; InGaAs ; MOSFET ; nanowire ; Nanowires ; oxide traps ; TCAD simulation</subject><ispartof>IEEE transactions on nuclear science, 2015-12, Vol.62 (6), p.2888-2893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e7f82951853e4e635666bbbb3d280aa0250e6f75101194668fa955d457c8a6a53</citedby><cites>FETCH-LOGICAL-c291t-e7f82951853e4e635666bbbb3d280aa0250e6f75101194668fa955d457c8a6a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7348786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7348786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shufeng Ren</creatorcontrib><creatorcontrib>Mengwei Si</creatorcontrib><creatorcontrib>Kai Ni</creatorcontrib><creatorcontrib>Xin Wan</creatorcontrib><creatorcontrib>Jin Chen</creatorcontrib><creatorcontrib>Sungjae Chang</creatorcontrib><creatorcontrib>Xiao Sun</creatorcontrib><creatorcontrib>En Xia Zhang</creatorcontrib><creatorcontrib>Reed, Robert A.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Peide Ye</creatorcontrib><creatorcontrib>Cui, Sharon</creatorcontrib><creatorcontrib>Ma, T. P.</creatorcontrib><title>Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly affect NW device radiation hardness. Low-frequency noise measurements are carried out to probe near-interfacial oxide-trap (border-trap) densities, and TCAD simulations are performed to assist in understanding the charge trapping in NW channel devices with high-k gate dielectrics. Optimized device structures exhibit high radiation tolerance.</description><subject>1/f noise</subject><subject>border traps</subject><subject>gate-all-around</subject><subject>high-k dielectric</subject><subject>High-K gate dielectrics</subject><subject>Indium gallium arsenide</subject><subject>InGaAs</subject><subject>MOSFET</subject><subject>nanowire</subject><subject>Nanowires</subject><subject>oxide traps</subject><subject>TCAD simulation</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLw0AQxhdRsD7ugpcFL_aQuptk9nEMtcaA1kNTPIY1mdiUuNHdFF__vCktzmWYme_7Bn6EXHA24Zzpm3y-mISMwySMtWSaHZARB1ABB6kOyYgxrgIda31MTrxfD2MMDEbkN-9609Kss81PY1_pbeeRXufZ7ZjO6hrL3tPG0tlX7_AN22-6KE2LFV22vTNBvhpu05WxFls6N7b7bNzgnj-PaWp6DJK2DRLXbWxFr9MkGdPMpibx9PFpcTfL_Rk5qk3r8XzfT8lyWE_vg4enNJsmD0EZat4HKGsVauAKIoxRRCCEeBkqqkLFjGEhMBS1BM4417EQqjYaoIpBlsoIA9EpudrlvrvuY4O-L9bdxtnhZcElMKYA5FbFdqrSdd47rIt317wZ911wVmwRFwPiYou42CMeLJc7S4OI_3IZxUoqEf0BccZzhg</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Shufeng Ren</creator><creator>Mengwei Si</creator><creator>Kai Ni</creator><creator>Xin Wan</creator><creator>Jin Chen</creator><creator>Sungjae Chang</creator><creator>Xiao Sun</creator><creator>En Xia Zhang</creator><creator>Reed, Robert A.</creator><creator>Fleetwood, Daniel M.</creator><creator>Peide Ye</creator><creator>Cui, Sharon</creator><creator>Ma, T. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201512</creationdate><title>Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs</title><author>Shufeng Ren ; Mengwei Si ; Kai Ni ; Xin Wan ; Jin Chen ; Sungjae Chang ; Xiao Sun ; En Xia Zhang ; Reed, Robert A. ; Fleetwood, Daniel M. ; Peide Ye ; Cui, Sharon ; Ma, T. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e7f82951853e4e635666bbbb3d280aa0250e6f75101194668fa955d457c8a6a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1/f noise</topic><topic>border traps</topic><topic>gate-all-around</topic><topic>high-k dielectric</topic><topic>High-K gate dielectrics</topic><topic>Indium gallium arsenide</topic><topic>InGaAs</topic><topic>MOSFET</topic><topic>nanowire</topic><topic>Nanowires</topic><topic>oxide traps</topic><topic>TCAD simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shufeng Ren</creatorcontrib><creatorcontrib>Mengwei Si</creatorcontrib><creatorcontrib>Kai Ni</creatorcontrib><creatorcontrib>Xin Wan</creatorcontrib><creatorcontrib>Jin Chen</creatorcontrib><creatorcontrib>Sungjae Chang</creatorcontrib><creatorcontrib>Xiao Sun</creatorcontrib><creatorcontrib>En Xia Zhang</creatorcontrib><creatorcontrib>Reed, Robert A.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Peide Ye</creatorcontrib><creatorcontrib>Cui, Sharon</creatorcontrib><creatorcontrib>Ma, T. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shufeng Ren</au><au>Mengwei Si</au><au>Kai Ni</au><au>Xin Wan</au><au>Jin Chen</au><au>Sungjae Chang</au><au>Xiao Sun</au><au>En Xia Zhang</au><au>Reed, Robert A.</au><au>Fleetwood, Daniel M.</au><au>Peide Ye</au><au>Cui, Sharon</au><au>Ma, T. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2015-12</date><risdate>2015</risdate><volume>62</volume><issue>6</issue><spage>2888</spage><epage>2893</epage><pages>2888-2893</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>InGaAs nanowire (NW) gate-all-around (GAA) MOSFETs exhibit superior radiation hardness compared to planar devices and FinFETs, benefitting from reduced gate-oxide electric fields. Applied gate bias during irradiation, channel thickness, and presence or absence of a forming gas anneal can strongly affect NW device radiation hardness. Low-frequency noise measurements are carried out to probe near-interfacial oxide-trap (border-trap) densities, and TCAD simulations are performed to assist in understanding the charge trapping in NW channel devices with high-k gate dielectrics. Optimized device structures exhibit high radiation tolerance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2015.2497090</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2015-12, Vol.62 (6), p.2888-2893
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2015_2497090
source IEEE Electronic Library (IEL)
subjects 1/f noise
border traps
gate-all-around
high-k dielectric
High-K gate dielectrics
Indium gallium arsenide
InGaAs
MOSFET
nanowire
Nanowires
oxide traps
TCAD simulation
title Total Ionizing Dose (TID) Effects in Extremely Scaled Ultra-Thin Channel Nanowire (NW) Gate-All-Around (GAA) InGaAs MOSFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Ionizing%20Dose%20(TID)%20Effects%20in%20Extremely%20Scaled%20Ultra-Thin%20Channel%20Nanowire%20(NW)%20Gate-All-Around%20(GAA)%20InGaAs%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Shufeng%20Ren&rft.date=2015-12&rft.volume=62&rft.issue=6&rft.spage=2888&rft.epage=2893&rft.pages=2888-2893&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2015.2497090&rft_dat=%3Cproquest_RIE%3E3899049031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750085575&rft_id=info:pmid/&rft_ieee_id=7348786&rfr_iscdi=true