RESCUE - Reduction of MRI SNR Degradation by Using an MR-Synchronous Low-Interference PET Acquisition Technique

Devices aiming at combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) to enable simultaneous PET/MR image acquisition have to fulfill demanding requirements to avoid mutual magneticas well as electromagnetic-field-related interferences which lead to image quality degrada...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2015-06, Vol.62 (3), p.634-643
Hauptverfasser: Gebhardt, Pierre, Wehner, Jakob, Weissler, Bjoern, Frach, Thomas, Marsden, Paul K., Schulz, Volkmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 3
container_start_page 634
container_title IEEE transactions on nuclear science
container_volume 62
creator Gebhardt, Pierre
Wehner, Jakob
Weissler, Bjoern
Frach, Thomas
Marsden, Paul K.
Schulz, Volkmar
description Devices aiming at combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) to enable simultaneous PET/MR image acquisition have to fulfill demanding requirements to avoid mutual magneticas well as electromagnetic-field-related interferences which lead to image quality degradation. Particularly Radio-Frequency (RF)-field-related interferences between PET and MRI may lead to MRI SNR reduction, thereby deteriorating MR image quality. RF shielding of PET electronics is therefore commonly applied to reduce RF emission and lower the potential coupling into MRI RF coil(s). However, shields introduce eddy-current-induced MRI field distortions and should thus be minimized or ideally omitted. Although the MRI noise floor increase caused by a PET system might be acceptable for many MRI applications, some MRI protocols, such as fast or high-resolution MRI scans, typically suffer from low SNR and might need more attention regarding RF silence to preserve the intrinsic MRI SNR. For such cases, we propose RESCUE, an MRI-synchronously-gated PET data acquisition technique: By interrupting the PET acquisition during MR signal receive phases, PET-related RF emission may be minimized, leading to MRI SNR preservation. Our PET insert Hyperion II D using Philips Digital Photon Counting (DPC) sensors serves as the platform to demonstrate RESCUE. To make the DPC sensor suitable for RESCUE to be applied for many MRI sequences with acquisition time windows in the range of a few milliseconds, we present in this paper a new technique which enables rapid DPC sensor operation interruption by dramatically lowering the overhead time to interrupt and restart the sensor operation. Procedures to enter and leave gated PET data acquisition may imply sensitivity losses which add to the ones occurring during MRI RF acquisition. For the case of our PET insert, the new DPC quick-interruption technique yields a PET sensitivity loss reduction by a factor of 78 when compared to the loss introduced with the standard start/stop procedure. For instance, PET sensitivity losses related to overhead time are 2.9% in addition to the loss related to PET gating being equal to the MRI RF acquisition duty cycle (14.7%) for an exemplary T1-weighted 3D-FFE MRI sequence. MRI SNR measurement results obtained with one Singles Detection Module (SDM) using no RF shield demonstrate a noise floor reduction by a factor of 2.1, getting close to the noise floor level of the SNR reference scan (SDM of
doi_str_mv 10.1109/TNS.2015.2434851
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2015_2434851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7117461</ieee_id><sourcerecordid>10_1109_TNS_2015_2434851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-5165a3b5a42750708da0507c8da2fb6dc729e396eefc43d3cb4e99db8fc51f5b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwR2LjH3CxYzuJl1UJUKkUlKTryHHGbRA41G6E-vekD7G6mrlzZnEQumd0whhVj-WymESUyUkkuEglu0AjJmVKmEzSSzSilKVECaWu0U0In8MoJJUj1OVZMVtlmOAcmt7s2s7hzuK3fI6LZY6fYO11o4_reo9XoXVrrN3Qk2LvzMZ3rusDXnS_ZO524C14cAbwR1biqdn2bWiPbAlm49ptD7foyuqvAHfnHKPVc1bOXsni_WU-my6IEULuiGSx1LyWWkSJpAlNG02HNENGto4bk0QKuIoBrBG84aYWoFRTp9ZIZmXNx4ie_hrfheDBVj--_dZ-XzFaHYRVg7DqIKw6CxuQhxPSAsD_ecJYImLG_wA55mcF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RESCUE - Reduction of MRI SNR Degradation by Using an MR-Synchronous Low-Interference PET Acquisition Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Gebhardt, Pierre ; Wehner, Jakob ; Weissler, Bjoern ; Frach, Thomas ; Marsden, Paul K. ; Schulz, Volkmar</creator><creatorcontrib>Gebhardt, Pierre ; Wehner, Jakob ; Weissler, Bjoern ; Frach, Thomas ; Marsden, Paul K. ; Schulz, Volkmar</creatorcontrib><description>Devices aiming at combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) to enable simultaneous PET/MR image acquisition have to fulfill demanding requirements to avoid mutual magneticas well as electromagnetic-field-related interferences which lead to image quality degradation. Particularly Radio-Frequency (RF)-field-related interferences between PET and MRI may lead to MRI SNR reduction, thereby deteriorating MR image quality. RF shielding of PET electronics is therefore commonly applied to reduce RF emission and lower the potential coupling into MRI RF coil(s). However, shields introduce eddy-current-induced MRI field distortions and should thus be minimized or ideally omitted. Although the MRI noise floor increase caused by a PET system might be acceptable for many MRI applications, some MRI protocols, such as fast or high-resolution MRI scans, typically suffer from low SNR and might need more attention regarding RF silence to preserve the intrinsic MRI SNR. For such cases, we propose RESCUE, an MRI-synchronously-gated PET data acquisition technique: By interrupting the PET acquisition during MR signal receive phases, PET-related RF emission may be minimized, leading to MRI SNR preservation. Our PET insert Hyperion II D using Philips Digital Photon Counting (DPC) sensors serves as the platform to demonstrate RESCUE. To make the DPC sensor suitable for RESCUE to be applied for many MRI sequences with acquisition time windows in the range of a few milliseconds, we present in this paper a new technique which enables rapid DPC sensor operation interruption by dramatically lowering the overhead time to interrupt and restart the sensor operation. Procedures to enter and leave gated PET data acquisition may imply sensitivity losses which add to the ones occurring during MRI RF acquisition. For the case of our PET insert, the new DPC quick-interruption technique yields a PET sensitivity loss reduction by a factor of 78 when compared to the loss introduced with the standard start/stop procedure. For instance, PET sensitivity losses related to overhead time are 2.9% in addition to the loss related to PET gating being equal to the MRI RF acquisition duty cycle (14.7%) for an exemplary T1-weighted 3D-FFE MRI sequence. MRI SNR measurement results obtained with one Singles Detection Module (SDM) using no RF shield demonstrate a noise floor reduction by a factor of 2.1, getting close to the noise floor level of the SNR reference scan (SDM off-powered) when RESCUE was active.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2015.2434851</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data acquisition ; Digital ; dSiPM ; FPGA ; Magnetic resonance imaging ; Positron emission tomography ; Radio frequency ; RF interference reduction ; RF silence ; Sensors ; shielding ; Signal to noise ratio ; simultaneous PET/MRI ; SNR</subject><ispartof>IEEE transactions on nuclear science, 2015-06, Vol.62 (3), p.634-643</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-5165a3b5a42750708da0507c8da2fb6dc729e396eefc43d3cb4e99db8fc51f5b3</citedby><cites>FETCH-LOGICAL-c445t-5165a3b5a42750708da0507c8da2fb6dc729e396eefc43d3cb4e99db8fc51f5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7117461$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Gebhardt, Pierre</creatorcontrib><creatorcontrib>Wehner, Jakob</creatorcontrib><creatorcontrib>Weissler, Bjoern</creatorcontrib><creatorcontrib>Frach, Thomas</creatorcontrib><creatorcontrib>Marsden, Paul K.</creatorcontrib><creatorcontrib>Schulz, Volkmar</creatorcontrib><title>RESCUE - Reduction of MRI SNR Degradation by Using an MR-Synchronous Low-Interference PET Acquisition Technique</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Devices aiming at combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) to enable simultaneous PET/MR image acquisition have to fulfill demanding requirements to avoid mutual magneticas well as electromagnetic-field-related interferences which lead to image quality degradation. Particularly Radio-Frequency (RF)-field-related interferences between PET and MRI may lead to MRI SNR reduction, thereby deteriorating MR image quality. RF shielding of PET electronics is therefore commonly applied to reduce RF emission and lower the potential coupling into MRI RF coil(s). However, shields introduce eddy-current-induced MRI field distortions and should thus be minimized or ideally omitted. Although the MRI noise floor increase caused by a PET system might be acceptable for many MRI applications, some MRI protocols, such as fast or high-resolution MRI scans, typically suffer from low SNR and might need more attention regarding RF silence to preserve the intrinsic MRI SNR. For such cases, we propose RESCUE, an MRI-synchronously-gated PET data acquisition technique: By interrupting the PET acquisition during MR signal receive phases, PET-related RF emission may be minimized, leading to MRI SNR preservation. Our PET insert Hyperion II D using Philips Digital Photon Counting (DPC) sensors serves as the platform to demonstrate RESCUE. To make the DPC sensor suitable for RESCUE to be applied for many MRI sequences with acquisition time windows in the range of a few milliseconds, we present in this paper a new technique which enables rapid DPC sensor operation interruption by dramatically lowering the overhead time to interrupt and restart the sensor operation. Procedures to enter and leave gated PET data acquisition may imply sensitivity losses which add to the ones occurring during MRI RF acquisition. For the case of our PET insert, the new DPC quick-interruption technique yields a PET sensitivity loss reduction by a factor of 78 when compared to the loss introduced with the standard start/stop procedure. For instance, PET sensitivity losses related to overhead time are 2.9% in addition to the loss related to PET gating being equal to the MRI RF acquisition duty cycle (14.7%) for an exemplary T1-weighted 3D-FFE MRI sequence. MRI SNR measurement results obtained with one Singles Detection Module (SDM) using no RF shield demonstrate a noise floor reduction by a factor of 2.1, getting close to the noise floor level of the SNR reference scan (SDM off-powered) when RESCUE was active.</description><subject>Data acquisition</subject><subject>Digital</subject><subject>dSiPM</subject><subject>FPGA</subject><subject>Magnetic resonance imaging</subject><subject>Positron emission tomography</subject><subject>Radio frequency</subject><subject>RF interference reduction</subject><subject>RF silence</subject><subject>Sensors</subject><subject>shielding</subject><subject>Signal to noise ratio</subject><subject>simultaneous PET/MRI</subject><subject>SNR</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqWwR2LjH3CxYzuJl1UJUKkUlKTryHHGbRA41G6E-vekD7G6mrlzZnEQumd0whhVj-WymESUyUkkuEglu0AjJmVKmEzSSzSilKVECaWu0U0In8MoJJUj1OVZMVtlmOAcmt7s2s7hzuK3fI6LZY6fYO11o4_reo9XoXVrrN3Qk2LvzMZ3rusDXnS_ZO524C14cAbwR1biqdn2bWiPbAlm49ptD7foyuqvAHfnHKPVc1bOXsni_WU-my6IEULuiGSx1LyWWkSJpAlNG02HNENGto4bk0QKuIoBrBG84aYWoFRTp9ZIZmXNx4ie_hrfheDBVj--_dZ-XzFaHYRVg7DqIKw6CxuQhxPSAsD_ecJYImLG_wA55mcF</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Gebhardt, Pierre</creator><creator>Wehner, Jakob</creator><creator>Weissler, Bjoern</creator><creator>Frach, Thomas</creator><creator>Marsden, Paul K.</creator><creator>Schulz, Volkmar</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150601</creationdate><title>RESCUE - Reduction of MRI SNR Degradation by Using an MR-Synchronous Low-Interference PET Acquisition Technique</title><author>Gebhardt, Pierre ; Wehner, Jakob ; Weissler, Bjoern ; Frach, Thomas ; Marsden, Paul K. ; Schulz, Volkmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-5165a3b5a42750708da0507c8da2fb6dc729e396eefc43d3cb4e99db8fc51f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Data acquisition</topic><topic>Digital</topic><topic>dSiPM</topic><topic>FPGA</topic><topic>Magnetic resonance imaging</topic><topic>Positron emission tomography</topic><topic>Radio frequency</topic><topic>RF interference reduction</topic><topic>RF silence</topic><topic>Sensors</topic><topic>shielding</topic><topic>Signal to noise ratio</topic><topic>simultaneous PET/MRI</topic><topic>SNR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebhardt, Pierre</creatorcontrib><creatorcontrib>Wehner, Jakob</creatorcontrib><creatorcontrib>Weissler, Bjoern</creatorcontrib><creatorcontrib>Frach, Thomas</creatorcontrib><creatorcontrib>Marsden, Paul K.</creatorcontrib><creatorcontrib>Schulz, Volkmar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gebhardt, Pierre</au><au>Wehner, Jakob</au><au>Weissler, Bjoern</au><au>Frach, Thomas</au><au>Marsden, Paul K.</au><au>Schulz, Volkmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RESCUE - Reduction of MRI SNR Degradation by Using an MR-Synchronous Low-Interference PET Acquisition Technique</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>62</volume><issue>3</issue><spage>634</spage><epage>643</epage><pages>634-643</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Devices aiming at combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) to enable simultaneous PET/MR image acquisition have to fulfill demanding requirements to avoid mutual magneticas well as electromagnetic-field-related interferences which lead to image quality degradation. Particularly Radio-Frequency (RF)-field-related interferences between PET and MRI may lead to MRI SNR reduction, thereby deteriorating MR image quality. RF shielding of PET electronics is therefore commonly applied to reduce RF emission and lower the potential coupling into MRI RF coil(s). However, shields introduce eddy-current-induced MRI field distortions and should thus be minimized or ideally omitted. Although the MRI noise floor increase caused by a PET system might be acceptable for many MRI applications, some MRI protocols, such as fast or high-resolution MRI scans, typically suffer from low SNR and might need more attention regarding RF silence to preserve the intrinsic MRI SNR. For such cases, we propose RESCUE, an MRI-synchronously-gated PET data acquisition technique: By interrupting the PET acquisition during MR signal receive phases, PET-related RF emission may be minimized, leading to MRI SNR preservation. Our PET insert Hyperion II D using Philips Digital Photon Counting (DPC) sensors serves as the platform to demonstrate RESCUE. To make the DPC sensor suitable for RESCUE to be applied for many MRI sequences with acquisition time windows in the range of a few milliseconds, we present in this paper a new technique which enables rapid DPC sensor operation interruption by dramatically lowering the overhead time to interrupt and restart the sensor operation. Procedures to enter and leave gated PET data acquisition may imply sensitivity losses which add to the ones occurring during MRI RF acquisition. For the case of our PET insert, the new DPC quick-interruption technique yields a PET sensitivity loss reduction by a factor of 78 when compared to the loss introduced with the standard start/stop procedure. For instance, PET sensitivity losses related to overhead time are 2.9% in addition to the loss related to PET gating being equal to the MRI RF acquisition duty cycle (14.7%) for an exemplary T1-weighted 3D-FFE MRI sequence. MRI SNR measurement results obtained with one Singles Detection Module (SDM) using no RF shield demonstrate a noise floor reduction by a factor of 2.1, getting close to the noise floor level of the SNR reference scan (SDM off-powered) when RESCUE was active.</abstract><pub>IEEE</pub><doi>10.1109/TNS.2015.2434851</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2015-06, Vol.62 (3), p.634-643
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2015_2434851
source IEEE Electronic Library (IEL)
subjects Data acquisition
Digital
dSiPM
FPGA
Magnetic resonance imaging
Positron emission tomography
Radio frequency
RF interference reduction
RF silence
Sensors
shielding
Signal to noise ratio
simultaneous PET/MRI
SNR
title RESCUE - Reduction of MRI SNR Degradation by Using an MR-Synchronous Low-Interference PET Acquisition Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RESCUE%20-%20Reduction%20of%20MRI%20SNR%20Degradation%20by%20Using%20an%20MR-Synchronous%20Low-Interference%20PET%20Acquisition%20Technique&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Gebhardt,%20Pierre&rft.date=2015-06-01&rft.volume=62&rft.issue=3&rft.spage=634&rft.epage=643&rft.pages=634-643&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2015.2434851&rft_dat=%3Ccrossref_ieee_%3E10_1109_TNS_2015_2434851%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7117461&rfr_iscdi=true