Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2012-12, Vol.59 (6), p.2995-3003
Hauptverfasser: Johnston, A. H., Swimm, R. T., Thorbourn, D. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3003
container_issue 6
container_start_page 2995
container_title IEEE transactions on nuclear science
container_volume 59
creator Johnston, A. H.
Swimm, R. T.
Thorbourn, D. O.
description Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -138 ° C, no damage occurs until devices are warmed to temperatures above -50 ° C. After warm-up, subsequent cooling shows that damage is then present at low temperature, although it is much less than for room temperature irradiation. This can be explained by the temperature dependence of dispersive transport in the continuous-time-random-walk model, along with the reduction in charge yield at low temperature. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.
doi_str_mv 10.1109/TNS.2012.2219592
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2012_2219592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6340368</ieee_id><sourcerecordid>2869270811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e030afb4c3cb708034beb93b0cc67ac803b76456a99bf04501acf9d0337e83753</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJOduxE4_QFqhUwUCYLce9oFRpHOxEiH-Pq1YMTKe7993d0yPkmsKMUlD35ev7jAFlM8aoEoqdkAkVokipyItTMgGgRaoypc7JRQjb2GYCxIQsSjeYNlm4gMmyrtEOIXFd8tj0rjU-WXUDfnoz4CaZN96OTZTNkKzdd1LirscojR4vyVlt2oBXxzolH0_Lcv6Srt-eV_OHdWo5y4YUgYOpq8xyW-VQAM8qrBSvwFqZGxsHVS4zIY1SVQ3RHzW2VhvgPMeC54JPyd3hbu_d14hh0LsmWGxb06Ebg6acCikZlXv09h-6daPvojtNWXyeQ8Z5pOBAWe9C8Fjr3jc74380Bb2PVcdY9T5WfYw1rtwcVhpE_MMlz4DLgv8CiTVxnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270870433</pqid></control><display><type>article</type><title>Total Dose Effects on Bipolar Integrated Circuits at Low Temperature</title><source>IEEE Electronic Library (IEL)</source><creator>Johnston, A. H. ; Swimm, R. T. ; Thorbourn, D. O.</creator><creatorcontrib>Johnston, A. H. ; Swimm, R. T. ; Thorbourn, D. O.</creatorcontrib><description>Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -138 ° C, no damage occurs until devices are warmed to temperatures above -50 ° C. After warm-up, subsequent cooling shows that damage is then present at low temperature, although it is much less than for room temperature irradiation. This can be explained by the temperature dependence of dispersive transport in the continuous-time-random-walk model, along with the reduction in charge yield at low temperature. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2012.2219592</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bipolar integrated circuits ; Damage ; Doping ; Gain ; Integrated circuits ; Irradiation ; Linear integrated circuits ; low temperature ; Radiation effects ; Semiconductor devices ; space radiation ; Space technology ; Temperature ; Temperature dependence ; Temperature measurement ; total dose effects ; Transistors ; Transport</subject><ispartof>IEEE transactions on nuclear science, 2012-12, Vol.59 (6), p.2995-3003</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-e030afb4c3cb708034beb93b0cc67ac803b76456a99bf04501acf9d0337e83753</citedby><cites>FETCH-LOGICAL-c324t-e030afb4c3cb708034beb93b0cc67ac803b76456a99bf04501acf9d0337e83753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6340368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6340368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Johnston, A. H.</creatorcontrib><creatorcontrib>Swimm, R. T.</creatorcontrib><creatorcontrib>Thorbourn, D. O.</creatorcontrib><title>Total Dose Effects on Bipolar Integrated Circuits at Low Temperature</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -138 ° C, no damage occurs until devices are warmed to temperatures above -50 ° C. After warm-up, subsequent cooling shows that damage is then present at low temperature, although it is much less than for room temperature irradiation. This can be explained by the temperature dependence of dispersive transport in the continuous-time-random-walk model, along with the reduction in charge yield at low temperature. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.</description><subject>Bipolar integrated circuits</subject><subject>Damage</subject><subject>Doping</subject><subject>Gain</subject><subject>Integrated circuits</subject><subject>Irradiation</subject><subject>Linear integrated circuits</subject><subject>low temperature</subject><subject>Radiation effects</subject><subject>Semiconductor devices</subject><subject>space radiation</subject><subject>Space technology</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><subject>total dose effects</subject><subject>Transistors</subject><subject>Transport</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJOduxE4_QFqhUwUCYLce9oFRpHOxEiH-Pq1YMTKe7993d0yPkmsKMUlD35ev7jAFlM8aoEoqdkAkVokipyItTMgGgRaoypc7JRQjb2GYCxIQsSjeYNlm4gMmyrtEOIXFd8tj0rjU-WXUDfnoz4CaZN96OTZTNkKzdd1LirscojR4vyVlt2oBXxzolH0_Lcv6Srt-eV_OHdWo5y4YUgYOpq8xyW-VQAM8qrBSvwFqZGxsHVS4zIY1SVQ3RHzW2VhvgPMeC54JPyd3hbu_d14hh0LsmWGxb06Ebg6acCikZlXv09h-6daPvojtNWXyeQ8Z5pOBAWe9C8Fjr3jc74380Bb2PVcdY9T5WfYw1rtwcVhpE_MMlz4DLgv8CiTVxnQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Johnston, A. H.</creator><creator>Swimm, R. T.</creator><creator>Thorbourn, D. O.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20121201</creationdate><title>Total Dose Effects on Bipolar Integrated Circuits at Low Temperature</title><author>Johnston, A. H. ; Swimm, R. T. ; Thorbourn, D. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e030afb4c3cb708034beb93b0cc67ac803b76456a99bf04501acf9d0337e83753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bipolar integrated circuits</topic><topic>Damage</topic><topic>Doping</topic><topic>Gain</topic><topic>Integrated circuits</topic><topic>Irradiation</topic><topic>Linear integrated circuits</topic><topic>low temperature</topic><topic>Radiation effects</topic><topic>Semiconductor devices</topic><topic>space radiation</topic><topic>Space technology</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><topic>total dose effects</topic><topic>Transistors</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, A. H.</creatorcontrib><creatorcontrib>Swimm, R. T.</creatorcontrib><creatorcontrib>Thorbourn, D. O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnston, A. H.</au><au>Swimm, R. T.</au><au>Thorbourn, D. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Dose Effects on Bipolar Integrated Circuits at Low Temperature</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>59</volume><issue>6</issue><spage>2995</spage><epage>3003</epage><pages>2995-3003</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -138 ° C, no damage occurs until devices are warmed to temperatures above -50 ° C. After warm-up, subsequent cooling shows that damage is then present at low temperature, although it is much less than for room temperature irradiation. This can be explained by the temperature dependence of dispersive transport in the continuous-time-random-walk model, along with the reduction in charge yield at low temperature. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2012.2219592</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2012-12, Vol.59 (6), p.2995-3003
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2012_2219592
source IEEE Electronic Library (IEL)
subjects Bipolar integrated circuits
Damage
Doping
Gain
Integrated circuits
Irradiation
Linear integrated circuits
low temperature
Radiation effects
Semiconductor devices
space radiation
Space technology
Temperature
Temperature dependence
Temperature measurement
total dose effects
Transistors
Transport
title Total Dose Effects on Bipolar Integrated Circuits at Low Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Dose%20Effects%20on%20Bipolar%20Integrated%20Circuits%20at%20Low%20Temperature&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Johnston,%20A.%20H.&rft.date=2012-12-01&rft.volume=59&rft.issue=6&rft.spage=2995&rft.epage=3003&rft.pages=2995-3003&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2012.2219592&rft_dat=%3Cproquest_RIE%3E2869270811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1270870433&rft_id=info:pmid/&rft_ieee_id=6340368&rfr_iscdi=true