Total Dose Effects on Bipolar Integrated Circuits at Low Temperature
Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2012-12, Vol.59 (6), p.2995-3003 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3003 |
---|---|
container_issue | 6 |
container_start_page | 2995 |
container_title | IEEE transactions on nuclear science |
container_volume | 59 |
creator | Johnston, A. H. Swimm, R. T. Thorbourn, D. O. |
description | Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -138 ° C, no damage occurs until devices are warmed to temperatures above -50 ° C. After warm-up, subsequent cooling shows that damage is then present at low temperature, although it is much less than for room temperature irradiation. This can be explained by the temperature dependence of dispersive transport in the continuous-time-random-walk model, along with the reduction in charge yield at low temperature. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage. |
doi_str_mv | 10.1109/TNS.2012.2219592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2012_2219592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6340368</ieee_id><sourcerecordid>2869270811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e030afb4c3cb708034beb93b0cc67ac803b76456a99bf04501acf9d0337e83753</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJOduxE4_QFqhUwUCYLce9oFRpHOxEiH-Pq1YMTKe7993d0yPkmsKMUlD35ev7jAFlM8aoEoqdkAkVokipyItTMgGgRaoypc7JRQjb2GYCxIQsSjeYNlm4gMmyrtEOIXFd8tj0rjU-WXUDfnoz4CaZN96OTZTNkKzdd1LirscojR4vyVlt2oBXxzolH0_Lcv6Srt-eV_OHdWo5y4YUgYOpq8xyW-VQAM8qrBSvwFqZGxsHVS4zIY1SVQ3RHzW2VhvgPMeC54JPyd3hbu_d14hh0LsmWGxb06Ebg6acCikZlXv09h-6daPvojtNWXyeQ8Z5pOBAWe9C8Fjr3jc74380Bb2PVcdY9T5WfYw1rtwcVhpE_MMlz4DLgv8CiTVxnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270870433</pqid></control><display><type>article</type><title>Total Dose Effects on Bipolar Integrated Circuits at Low Temperature</title><source>IEEE Electronic Library (IEL)</source><creator>Johnston, A. H. ; Swimm, R. T. ; Thorbourn, D. O.</creator><creatorcontrib>Johnston, A. H. ; Swimm, R. T. ; Thorbourn, D. O.</creatorcontrib><description>Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -138 ° C, no damage occurs until devices are warmed to temperatures above -50 ° C. After warm-up, subsequent cooling shows that damage is then present at low temperature, although it is much less than for room temperature irradiation. This can be explained by the temperature dependence of dispersive transport in the continuous-time-random-walk model, along with the reduction in charge yield at low temperature. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2012.2219592</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bipolar integrated circuits ; Damage ; Doping ; Gain ; Integrated circuits ; Irradiation ; Linear integrated circuits ; low temperature ; Radiation effects ; Semiconductor devices ; space radiation ; Space technology ; Temperature ; Temperature dependence ; Temperature measurement ; total dose effects ; Transistors ; Transport</subject><ispartof>IEEE transactions on nuclear science, 2012-12, Vol.59 (6), p.2995-3003</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-e030afb4c3cb708034beb93b0cc67ac803b76456a99bf04501acf9d0337e83753</citedby><cites>FETCH-LOGICAL-c324t-e030afb4c3cb708034beb93b0cc67ac803b76456a99bf04501acf9d0337e83753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6340368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6340368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Johnston, A. H.</creatorcontrib><creatorcontrib>Swimm, R. T.</creatorcontrib><creatorcontrib>Thorbourn, D. O.</creatorcontrib><title>Total Dose Effects on Bipolar Integrated Circuits at Low Temperature</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -138 ° C, no damage occurs until devices are warmed to temperatures above -50 ° C. After warm-up, subsequent cooling shows that damage is then present at low temperature, although it is much less than for room temperature irradiation. This can be explained by the temperature dependence of dispersive transport in the continuous-time-random-walk model, along with the reduction in charge yield at low temperature. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.</description><subject>Bipolar integrated circuits</subject><subject>Damage</subject><subject>Doping</subject><subject>Gain</subject><subject>Integrated circuits</subject><subject>Irradiation</subject><subject>Linear integrated circuits</subject><subject>low temperature</subject><subject>Radiation effects</subject><subject>Semiconductor devices</subject><subject>space radiation</subject><subject>Space technology</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><subject>total dose effects</subject><subject>Transistors</subject><subject>Transport</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQhS0EEqWwI7FEYmFJOduxE4_QFqhUwUCYLce9oFRpHOxEiH-Pq1YMTKe7993d0yPkmsKMUlD35ev7jAFlM8aoEoqdkAkVokipyItTMgGgRaoypc7JRQjb2GYCxIQsSjeYNlm4gMmyrtEOIXFd8tj0rjU-WXUDfnoz4CaZN96OTZTNkKzdd1LirscojR4vyVlt2oBXxzolH0_Lcv6Srt-eV_OHdWo5y4YUgYOpq8xyW-VQAM8qrBSvwFqZGxsHVS4zIY1SVQ3RHzW2VhvgPMeC54JPyd3hbu_d14hh0LsmWGxb06Ebg6acCikZlXv09h-6daPvojtNWXyeQ8Z5pOBAWe9C8Fjr3jc74380Bb2PVcdY9T5WfYw1rtwcVhpE_MMlz4DLgv8CiTVxnQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Johnston, A. H.</creator><creator>Swimm, R. T.</creator><creator>Thorbourn, D. O.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20121201</creationdate><title>Total Dose Effects on Bipolar Integrated Circuits at Low Temperature</title><author>Johnston, A. H. ; Swimm, R. T. ; Thorbourn, D. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e030afb4c3cb708034beb93b0cc67ac803b76456a99bf04501acf9d0337e83753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bipolar integrated circuits</topic><topic>Damage</topic><topic>Doping</topic><topic>Gain</topic><topic>Integrated circuits</topic><topic>Irradiation</topic><topic>Linear integrated circuits</topic><topic>low temperature</topic><topic>Radiation effects</topic><topic>Semiconductor devices</topic><topic>space radiation</topic><topic>Space technology</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><topic>total dose effects</topic><topic>Transistors</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, A. H.</creatorcontrib><creatorcontrib>Swimm, R. T.</creatorcontrib><creatorcontrib>Thorbourn, D. O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnston, A. H.</au><au>Swimm, R. T.</au><au>Thorbourn, D. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Dose Effects on Bipolar Integrated Circuits at Low Temperature</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>59</volume><issue>6</issue><spage>2995</spage><epage>3003</epage><pages>2995-3003</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -138 ° C, no damage occurs until devices are warmed to temperatures above -50 ° C. After warm-up, subsequent cooling shows that damage is then present at low temperature, although it is much less than for room temperature irradiation. This can be explained by the temperature dependence of dispersive transport in the continuous-time-random-walk model, along with the reduction in charge yield at low temperature. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2012.2219592</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2012-12, Vol.59 (6), p.2995-3003 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_2012_2219592 |
source | IEEE Electronic Library (IEL) |
subjects | Bipolar integrated circuits Damage Doping Gain Integrated circuits Irradiation Linear integrated circuits low temperature Radiation effects Semiconductor devices space radiation Space technology Temperature Temperature dependence Temperature measurement total dose effects Transistors Transport |
title | Total Dose Effects on Bipolar Integrated Circuits at Low Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Dose%20Effects%20on%20Bipolar%20Integrated%20Circuits%20at%20Low%20Temperature&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Johnston,%20A.%20H.&rft.date=2012-12-01&rft.volume=59&rft.issue=6&rft.spage=2995&rft.epage=3003&rft.pages=2995-3003&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2012.2219592&rft_dat=%3Cproquest_RIE%3E2869270811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1270870433&rft_id=info:pmid/&rft_ieee_id=6340368&rfr_iscdi=true |