Radiation Effects in MOS Oxides

Electronic devices in space environments can contain numerous types of oxides and insulators. Ionizing radiation can induce significant charge buildup in these oxides and insulators leading to device degradation and failure. Electrons and protons in space can lead to radiation-induced total-dose eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2008-08, Vol.55 (4), p.1833-1853
Hauptverfasser: Schwank, J.R., Shaneyfelt, M.R., Fleetwood, D.M., Felix, J.A., Dodd, P.E., Paillet, P., Ferlet-Cavrois, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1853
container_issue 4
container_start_page 1833
container_title IEEE transactions on nuclear science
container_volume 55
creator Schwank, J.R.
Shaneyfelt, M.R.
Fleetwood, D.M.
Felix, J.A.
Dodd, P.E.
Paillet, P.
Ferlet-Cavrois, V.
description Electronic devices in space environments can contain numerous types of oxides and insulators. Ionizing radiation can induce significant charge buildup in these oxides and insulators leading to device degradation and failure. Electrons and protons in space can lead to radiation-induced total-dose effects. The two primary types of radiation-induced charge are oxide-trapped charge and interface-trap charge. These charges can cause large radiation-induced threshold voltage shifts and increases in leakage currents. Two alternate dielectrics that have been investigated for replacing silicon dioxide are hafnium oxides and reoxidized nitrided oxides (RNO). For advanced technologies, which may employ alternate dielectrics, radiation-induced voltage shifts in these insulators may be negligible. Radiation-induced charge buildup in parasitic field oxides and in SOI buried oxides can also lead to device degradation and failure. Indeed, for advanced commercial technologies, the total-dose hardness of ICs is normally dominated by radiation-induced charge buildup in either parasitic field oxides and/or SOI buried oxides. Heavy ions in space can also degrade the oxides in electronic devices through several different mechanisms including single-event gate rupture, reduction in device lifetime, and large voltage shifts in power MOSFETs.
doi_str_mv 10.1109/TNS.2008.2001040
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2008_2001040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4636929</ieee_id><sourcerecordid>875039553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-e22f90a179c83b70c929be834d7ae97e5f9768b8565b8f915f148edd8451b22a3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMoWKt3wYOLF09bM3lskqOU-oDqgq3nkN2dQEq7Wzdb0H9vSosHLzPM8M0w8xFyDXQCQM3D8n0xYZTqfQAq6AkZgZQ6B6n0KRmlps6NMOacXMS4SqWQVI7I7YdrghtC12Yz77EeYhba7K1cZOV3aDBekjPv1hGvjnlMPp9my-lLPi-fX6eP87wWAEOOjHlDHShTa14pWhtmKtRcNMqhUSi9UYWutCxkpb0B6UFobBotJFSMOT4m94e927772mEc7CbEGtdr12K3i1YrSbmRkify7h-56nZ9m46zBhiTnAJLED1Add_F2KO32z5sXP9jgdq9L5t82b0ve_SVRm4OIwER_3BR8CL9wn8BnOZi6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912253012</pqid></control><display><type>article</type><title>Radiation Effects in MOS Oxides</title><source>IEEE/IET Electronic Library</source><creator>Schwank, J.R. ; Shaneyfelt, M.R. ; Fleetwood, D.M. ; Felix, J.A. ; Dodd, P.E. ; Paillet, P. ; Ferlet-Cavrois, V.</creator><creatorcontrib>Schwank, J.R. ; Shaneyfelt, M.R. ; Fleetwood, D.M. ; Felix, J.A. ; Dodd, P.E. ; Paillet, P. ; Ferlet-Cavrois, V.</creatorcontrib><description>Electronic devices in space environments can contain numerous types of oxides and insulators. Ionizing radiation can induce significant charge buildup in these oxides and insulators leading to device degradation and failure. Electrons and protons in space can lead to radiation-induced total-dose effects. The two primary types of radiation-induced charge are oxide-trapped charge and interface-trap charge. These charges can cause large radiation-induced threshold voltage shifts and increases in leakage currents. Two alternate dielectrics that have been investigated for replacing silicon dioxide are hafnium oxides and reoxidized nitrided oxides (RNO). For advanced technologies, which may employ alternate dielectrics, radiation-induced voltage shifts in these insulators may be negligible. Radiation-induced charge buildup in parasitic field oxides and in SOI buried oxides can also lead to device degradation and failure. Indeed, for advanced commercial technologies, the total-dose hardness of ICs is normally dominated by radiation-induced charge buildup in either parasitic field oxides and/or SOI buried oxides. Heavy ions in space can also degrade the oxides in electronic devices through several different mechanisms including single-event gate rupture, reduction in device lifetime, and large voltage shifts in power MOSFETs.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2008.2001040</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; Charge ; Construction ; Degradation ; Devices ; Dielectrics and electrical insulation ; Electric potential ; Electrons ; Failure ; Insulators ; Ionizing radiation ; Lead compounds ; MOS devices ; oxide breakdown ; Oxides ; power MOSFETs ; Protons ; Radiation effects ; Silicon on insulator technology ; silicon-on-insulator ; Space technology ; total dose effects ; Voltage</subject><ispartof>IEEE transactions on nuclear science, 2008-08, Vol.55 (4), p.1833-1853</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-e22f90a179c83b70c929be834d7ae97e5f9768b8565b8f915f148edd8451b22a3</citedby><cites>FETCH-LOGICAL-c411t-e22f90a179c83b70c929be834d7ae97e5f9768b8565b8f915f148edd8451b22a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4636929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4636929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schwank, J.R.</creatorcontrib><creatorcontrib>Shaneyfelt, M.R.</creatorcontrib><creatorcontrib>Fleetwood, D.M.</creatorcontrib><creatorcontrib>Felix, J.A.</creatorcontrib><creatorcontrib>Dodd, P.E.</creatorcontrib><creatorcontrib>Paillet, P.</creatorcontrib><creatorcontrib>Ferlet-Cavrois, V.</creatorcontrib><title>Radiation Effects in MOS Oxides</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Electronic devices in space environments can contain numerous types of oxides and insulators. Ionizing radiation can induce significant charge buildup in these oxides and insulators leading to device degradation and failure. Electrons and protons in space can lead to radiation-induced total-dose effects. The two primary types of radiation-induced charge are oxide-trapped charge and interface-trap charge. These charges can cause large radiation-induced threshold voltage shifts and increases in leakage currents. Two alternate dielectrics that have been investigated for replacing silicon dioxide are hafnium oxides and reoxidized nitrided oxides (RNO). For advanced technologies, which may employ alternate dielectrics, radiation-induced voltage shifts in these insulators may be negligible. Radiation-induced charge buildup in parasitic field oxides and in SOI buried oxides can also lead to device degradation and failure. Indeed, for advanced commercial technologies, the total-dose hardness of ICs is normally dominated by radiation-induced charge buildup in either parasitic field oxides and/or SOI buried oxides. Heavy ions in space can also degrade the oxides in electronic devices through several different mechanisms including single-event gate rupture, reduction in device lifetime, and large voltage shifts in power MOSFETs.</description><subject>Aging</subject><subject>Charge</subject><subject>Construction</subject><subject>Degradation</subject><subject>Devices</subject><subject>Dielectrics and electrical insulation</subject><subject>Electric potential</subject><subject>Electrons</subject><subject>Failure</subject><subject>Insulators</subject><subject>Ionizing radiation</subject><subject>Lead compounds</subject><subject>MOS devices</subject><subject>oxide breakdown</subject><subject>Oxides</subject><subject>power MOSFETs</subject><subject>Protons</subject><subject>Radiation effects</subject><subject>Silicon on insulator technology</subject><subject>silicon-on-insulator</subject><subject>Space technology</subject><subject>total dose effects</subject><subject>Voltage</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMoWKt3wYOLF09bM3lskqOU-oDqgq3nkN2dQEq7Wzdb0H9vSosHLzPM8M0w8xFyDXQCQM3D8n0xYZTqfQAq6AkZgZQ6B6n0KRmlps6NMOacXMS4SqWQVI7I7YdrghtC12Yz77EeYhba7K1cZOV3aDBekjPv1hGvjnlMPp9my-lLPi-fX6eP87wWAEOOjHlDHShTa14pWhtmKtRcNMqhUSi9UYWutCxkpb0B6UFobBotJFSMOT4m94e927772mEc7CbEGtdr12K3i1YrSbmRkify7h-56nZ9m46zBhiTnAJLED1Add_F2KO32z5sXP9jgdq9L5t82b0ve_SVRm4OIwER_3BR8CL9wn8BnOZi6g</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Schwank, J.R.</creator><creator>Shaneyfelt, M.R.</creator><creator>Fleetwood, D.M.</creator><creator>Felix, J.A.</creator><creator>Dodd, P.E.</creator><creator>Paillet, P.</creator><creator>Ferlet-Cavrois, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20080801</creationdate><title>Radiation Effects in MOS Oxides</title><author>Schwank, J.R. ; Shaneyfelt, M.R. ; Fleetwood, D.M. ; Felix, J.A. ; Dodd, P.E. ; Paillet, P. ; Ferlet-Cavrois, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-e22f90a179c83b70c929be834d7ae97e5f9768b8565b8f915f148edd8451b22a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aging</topic><topic>Charge</topic><topic>Construction</topic><topic>Degradation</topic><topic>Devices</topic><topic>Dielectrics and electrical insulation</topic><topic>Electric potential</topic><topic>Electrons</topic><topic>Failure</topic><topic>Insulators</topic><topic>Ionizing radiation</topic><topic>Lead compounds</topic><topic>MOS devices</topic><topic>oxide breakdown</topic><topic>Oxides</topic><topic>power MOSFETs</topic><topic>Protons</topic><topic>Radiation effects</topic><topic>Silicon on insulator technology</topic><topic>silicon-on-insulator</topic><topic>Space technology</topic><topic>total dose effects</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwank, J.R.</creatorcontrib><creatorcontrib>Shaneyfelt, M.R.</creatorcontrib><creatorcontrib>Fleetwood, D.M.</creatorcontrib><creatorcontrib>Felix, J.A.</creatorcontrib><creatorcontrib>Dodd, P.E.</creatorcontrib><creatorcontrib>Paillet, P.</creatorcontrib><creatorcontrib>Ferlet-Cavrois, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwank, J.R.</au><au>Shaneyfelt, M.R.</au><au>Fleetwood, D.M.</au><au>Felix, J.A.</au><au>Dodd, P.E.</au><au>Paillet, P.</au><au>Ferlet-Cavrois, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation Effects in MOS Oxides</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>55</volume><issue>4</issue><spage>1833</spage><epage>1853</epage><pages>1833-1853</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Electronic devices in space environments can contain numerous types of oxides and insulators. Ionizing radiation can induce significant charge buildup in these oxides and insulators leading to device degradation and failure. Electrons and protons in space can lead to radiation-induced total-dose effects. The two primary types of radiation-induced charge are oxide-trapped charge and interface-trap charge. These charges can cause large radiation-induced threshold voltage shifts and increases in leakage currents. Two alternate dielectrics that have been investigated for replacing silicon dioxide are hafnium oxides and reoxidized nitrided oxides (RNO). For advanced technologies, which may employ alternate dielectrics, radiation-induced voltage shifts in these insulators may be negligible. Radiation-induced charge buildup in parasitic field oxides and in SOI buried oxides can also lead to device degradation and failure. Indeed, for advanced commercial technologies, the total-dose hardness of ICs is normally dominated by radiation-induced charge buildup in either parasitic field oxides and/or SOI buried oxides. Heavy ions in space can also degrade the oxides in electronic devices through several different mechanisms including single-event gate rupture, reduction in device lifetime, and large voltage shifts in power MOSFETs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2008.2001040</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2008-08, Vol.55 (4), p.1833-1853
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2008_2001040
source IEEE/IET Electronic Library
subjects Aging
Charge
Construction
Degradation
Devices
Dielectrics and electrical insulation
Electric potential
Electrons
Failure
Insulators
Ionizing radiation
Lead compounds
MOS devices
oxide breakdown
Oxides
power MOSFETs
Protons
Radiation effects
Silicon on insulator technology
silicon-on-insulator
Space technology
total dose effects
Voltage
title Radiation Effects in MOS Oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20Effects%20in%20MOS%20Oxides&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Schwank,%20J.R.&rft.date=2008-08-01&rft.volume=55&rft.issue=4&rft.spage=1833&rft.epage=1853&rft.pages=1833-1853&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2008.2001040&rft_dat=%3Cproquest_RIE%3E875039553%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912253012&rft_id=info:pmid/&rft_ieee_id=4636929&rfr_iscdi=true