Mapping the large area straw detectors of the COMPASS experiment with X-rays

In the COMPASS experiment at CERN, large straw drift tube detectors are used for large-angle tracking. To minimize the total areal density, a self supporting structure of thin-walled plastic tubes was chosen and, hence, a loss in mechanical precision was accepted. A complete mapping of the anode wir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2005-06, Vol.52 (3), p.793-798
Hauptverfasser: Platzer, K., Dunnweber, W., Dedek, N., Faessler, M., Geyer, R., Ilgner, C., Peshekhonov, V., Wellenstein, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 798
container_issue 3
container_start_page 793
container_title IEEE transactions on nuclear science
container_volume 52
creator Platzer, K.
Dunnweber, W.
Dedek, N.
Faessler, M.
Geyer, R.
Ilgner, C.
Peshekhonov, V.
Wellenstein, H.
description In the COMPASS experiment at CERN, large straw drift tube detectors are used for large-angle tracking. To minimize the total areal density, a self supporting structure of thin-walled plastic tubes was chosen and, hence, a loss in mechanical precision was accepted. A complete mapping of the anode wire coordinate grid was required. An X-ray apparatus using a charge-coupled device (CCD) as imaging detector was built to investigate the mechanical properties and to calibrate (offline) the wire positions. Deviations of typically 200-400 /spl mu/m from the nominal positions, defined by equal spacing, are found across the detector area of 8 m/sup 2/. With a calibration method based on high-resolution CCD imaging and pattern recognition algorithms, the absolute wire coordinates are determined with an accuracy better than 30 /spl mu/m across the whole detector area. Temperature effects are clearly seen. Their inhomogenity limits the achievable accuracy to about 50 /spl mu/m under realistic experimental conditions, which is sufficient in view of the intrinsic straw resolution of 200 /spl mu/m for minimum ionizing particles. The offline calibration was checked with particle tracks in the experimental setup, running COMPASS with 160 GeV/c muons. Tracks reconstructed with other detectors that cover a central angular range were used for this comparison. Good agreement is found between these in situ measurements and the X-ray calibration.
doi_str_mv 10.1109/TNS.2005.850971
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_2005_850971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1487725</ieee_id><sourcerecordid>28059843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e5e2c3eabf3b3c5f2b066cf4aabb00097cfe83e0c593999a540d2643781a105d3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRsFbPHrwsHvSUdj-yye6xFL-gWqEVvC2b7aRNSZO4m1L7790aQfDgaRh43mFmHoQuKRlQStRw_jIbMELEQAqiUnqEelQIGVGRymPUI4TKSMVKnaIz79ehjQURPTR5Nk1TVEvcrgCXxi0BGwcG-9aZHV5AC7atncd1_k2Mp8-vo9kMw2cDrthA1eJd0a7we-TM3p-jk9yUHi5-ah-93d_Nx4_RZPrwNB5NIstl0kYggFkOJst5xq3IWUaSxOaxMVlGSFje5iA5ECsUV0oZEZMFS2KeSmooEQveR7fd3MbVH1vwrd4U3kJZmgrqrddSJYzJhMlA3vxLMkmEkjEP4PUfcF1vXRWu0IrSgCh6mDbsIOtq7x3kuglPMG6vKdEHCTpI0AcJupMQElddogCAXzqWacoE_wJuooFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911984918</pqid></control><display><type>article</type><title>Mapping the large area straw detectors of the COMPASS experiment with X-rays</title><source>IEEE Electronic Library (IEL)</source><creator>Platzer, K. ; Dunnweber, W. ; Dedek, N. ; Faessler, M. ; Geyer, R. ; Ilgner, C. ; Peshekhonov, V. ; Wellenstein, H.</creator><creatorcontrib>Platzer, K. ; Dunnweber, W. ; Dedek, N. ; Faessler, M. ; Geyer, R. ; Ilgner, C. ; Peshekhonov, V. ; Wellenstein, H.</creatorcontrib><description>In the COMPASS experiment at CERN, large straw drift tube detectors are used for large-angle tracking. To minimize the total areal density, a self supporting structure of thin-walled plastic tubes was chosen and, hence, a loss in mechanical precision was accepted. A complete mapping of the anode wire coordinate grid was required. An X-ray apparatus using a charge-coupled device (CCD) as imaging detector was built to investigate the mechanical properties and to calibrate (offline) the wire positions. Deviations of typically 200-400 /spl mu/m from the nominal positions, defined by equal spacing, are found across the detector area of 8 m/sup 2/. With a calibration method based on high-resolution CCD imaging and pattern recognition algorithms, the absolute wire coordinates are determined with an accuracy better than 30 /spl mu/m across the whole detector area. Temperature effects are clearly seen. Their inhomogenity limits the achievable accuracy to about 50 /spl mu/m under realistic experimental conditions, which is sufficient in view of the intrinsic straw resolution of 200 /spl mu/m for minimum ionizing particles. The offline calibration was checked with particle tracks in the experimental setup, running COMPASS with 160 GeV/c muons. Tracks reconstructed with other detectors that cover a central angular range were used for this comparison. Good agreement is found between these in situ measurements and the X-ray calibration.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2005.850971</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Calibration ; Charge coupled devices ; charge-coupled device (CCD) ; COMPASS (programming language) ; Detectors ; High-resolution imaging ; Imaging ; Optical imaging ; particle tracking ; Plastics ; Straw ; straw detector ; Thin wall structures ; Wire ; X-ray ; X-ray detection ; X-ray detectors ; X-rays</subject><ispartof>IEEE transactions on nuclear science, 2005-06, Vol.52 (3), p.793-798</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e5e2c3eabf3b3c5f2b066cf4aabb00097cfe83e0c593999a540d2643781a105d3</citedby><cites>FETCH-LOGICAL-c386t-e5e2c3eabf3b3c5f2b066cf4aabb00097cfe83e0c593999a540d2643781a105d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1487725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1487725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Platzer, K.</creatorcontrib><creatorcontrib>Dunnweber, W.</creatorcontrib><creatorcontrib>Dedek, N.</creatorcontrib><creatorcontrib>Faessler, M.</creatorcontrib><creatorcontrib>Geyer, R.</creatorcontrib><creatorcontrib>Ilgner, C.</creatorcontrib><creatorcontrib>Peshekhonov, V.</creatorcontrib><creatorcontrib>Wellenstein, H.</creatorcontrib><title>Mapping the large area straw detectors of the COMPASS experiment with X-rays</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>In the COMPASS experiment at CERN, large straw drift tube detectors are used for large-angle tracking. To minimize the total areal density, a self supporting structure of thin-walled plastic tubes was chosen and, hence, a loss in mechanical precision was accepted. A complete mapping of the anode wire coordinate grid was required. An X-ray apparatus using a charge-coupled device (CCD) as imaging detector was built to investigate the mechanical properties and to calibrate (offline) the wire positions. Deviations of typically 200-400 /spl mu/m from the nominal positions, defined by equal spacing, are found across the detector area of 8 m/sup 2/. With a calibration method based on high-resolution CCD imaging and pattern recognition algorithms, the absolute wire coordinates are determined with an accuracy better than 30 /spl mu/m across the whole detector area. Temperature effects are clearly seen. Their inhomogenity limits the achievable accuracy to about 50 /spl mu/m under realistic experimental conditions, which is sufficient in view of the intrinsic straw resolution of 200 /spl mu/m for minimum ionizing particles. The offline calibration was checked with particle tracks in the experimental setup, running COMPASS with 160 GeV/c muons. Tracks reconstructed with other detectors that cover a central angular range were used for this comparison. Good agreement is found between these in situ measurements and the X-ray calibration.</description><subject>Anodes</subject><subject>Calibration</subject><subject>Charge coupled devices</subject><subject>charge-coupled device (CCD)</subject><subject>COMPASS (programming language)</subject><subject>Detectors</subject><subject>High-resolution imaging</subject><subject>Imaging</subject><subject>Optical imaging</subject><subject>particle tracking</subject><subject>Plastics</subject><subject>Straw</subject><subject>straw detector</subject><subject>Thin wall structures</subject><subject>Wire</subject><subject>X-ray</subject><subject>X-ray detection</subject><subject>X-ray detectors</subject><subject>X-rays</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1Lw0AQhhdRsFbPHrwsHvSUdj-yye6xFL-gWqEVvC2b7aRNSZO4m1L7790aQfDgaRh43mFmHoQuKRlQStRw_jIbMELEQAqiUnqEelQIGVGRymPUI4TKSMVKnaIz79ehjQURPTR5Nk1TVEvcrgCXxi0BGwcG-9aZHV5AC7atncd1_k2Mp8-vo9kMw2cDrthA1eJd0a7we-TM3p-jk9yUHi5-ah-93d_Nx4_RZPrwNB5NIstl0kYggFkOJst5xq3IWUaSxOaxMVlGSFje5iA5ECsUV0oZEZMFS2KeSmooEQveR7fd3MbVH1vwrd4U3kJZmgrqrddSJYzJhMlA3vxLMkmEkjEP4PUfcF1vXRWu0IrSgCh6mDbsIOtq7x3kuglPMG6vKdEHCTpI0AcJupMQElddogCAXzqWacoE_wJuooFM</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Platzer, K.</creator><creator>Dunnweber, W.</creator><creator>Dedek, N.</creator><creator>Faessler, M.</creator><creator>Geyer, R.</creator><creator>Ilgner, C.</creator><creator>Peshekhonov, V.</creator><creator>Wellenstein, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20050601</creationdate><title>Mapping the large area straw detectors of the COMPASS experiment with X-rays</title><author>Platzer, K. ; Dunnweber, W. ; Dedek, N. ; Faessler, M. ; Geyer, R. ; Ilgner, C. ; Peshekhonov, V. ; Wellenstein, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e5e2c3eabf3b3c5f2b066cf4aabb00097cfe83e0c593999a540d2643781a105d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anodes</topic><topic>Calibration</topic><topic>Charge coupled devices</topic><topic>charge-coupled device (CCD)</topic><topic>COMPASS (programming language)</topic><topic>Detectors</topic><topic>High-resolution imaging</topic><topic>Imaging</topic><topic>Optical imaging</topic><topic>particle tracking</topic><topic>Plastics</topic><topic>Straw</topic><topic>straw detector</topic><topic>Thin wall structures</topic><topic>Wire</topic><topic>X-ray</topic><topic>X-ray detection</topic><topic>X-ray detectors</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platzer, K.</creatorcontrib><creatorcontrib>Dunnweber, W.</creatorcontrib><creatorcontrib>Dedek, N.</creatorcontrib><creatorcontrib>Faessler, M.</creatorcontrib><creatorcontrib>Geyer, R.</creatorcontrib><creatorcontrib>Ilgner, C.</creatorcontrib><creatorcontrib>Peshekhonov, V.</creatorcontrib><creatorcontrib>Wellenstein, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Platzer, K.</au><au>Dunnweber, W.</au><au>Dedek, N.</au><au>Faessler, M.</au><au>Geyer, R.</au><au>Ilgner, C.</au><au>Peshekhonov, V.</au><au>Wellenstein, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the large area straw detectors of the COMPASS experiment with X-rays</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2005-06-01</date><risdate>2005</risdate><volume>52</volume><issue>3</issue><spage>793</spage><epage>798</epage><pages>793-798</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>In the COMPASS experiment at CERN, large straw drift tube detectors are used for large-angle tracking. To minimize the total areal density, a self supporting structure of thin-walled plastic tubes was chosen and, hence, a loss in mechanical precision was accepted. A complete mapping of the anode wire coordinate grid was required. An X-ray apparatus using a charge-coupled device (CCD) as imaging detector was built to investigate the mechanical properties and to calibrate (offline) the wire positions. Deviations of typically 200-400 /spl mu/m from the nominal positions, defined by equal spacing, are found across the detector area of 8 m/sup 2/. With a calibration method based on high-resolution CCD imaging and pattern recognition algorithms, the absolute wire coordinates are determined with an accuracy better than 30 /spl mu/m across the whole detector area. Temperature effects are clearly seen. Their inhomogenity limits the achievable accuracy to about 50 /spl mu/m under realistic experimental conditions, which is sufficient in view of the intrinsic straw resolution of 200 /spl mu/m for minimum ionizing particles. The offline calibration was checked with particle tracks in the experimental setup, running COMPASS with 160 GeV/c muons. Tracks reconstructed with other detectors that cover a central angular range were used for this comparison. Good agreement is found between these in situ measurements and the X-ray calibration.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2005.850971</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2005-06, Vol.52 (3), p.793-798
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_2005_850971
source IEEE Electronic Library (IEL)
subjects Anodes
Calibration
Charge coupled devices
charge-coupled device (CCD)
COMPASS (programming language)
Detectors
High-resolution imaging
Imaging
Optical imaging
particle tracking
Plastics
Straw
straw detector
Thin wall structures
Wire
X-ray
X-ray detection
X-ray detectors
X-rays
title Mapping the large area straw detectors of the COMPASS experiment with X-rays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20large%20area%20straw%20detectors%20of%20the%20COMPASS%20experiment%20with%20X-rays&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Platzer,%20K.&rft.date=2005-06-01&rft.volume=52&rft.issue=3&rft.spage=793&rft.epage=798&rft.pages=793-798&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2005.850971&rft_dat=%3Cproquest_RIE%3E28059843%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911984918&rft_id=info:pmid/&rft_ieee_id=1487725&rfr_iscdi=true