Functional Expansion Technique for Monte Carlo Electron Transport Calculations
A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 1976-01, Vol.23 (6), p.1850-1856 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1856 |
---|---|
container_issue | 6 |
container_start_page | 1850 |
container_title | IEEE transactions on nuclear science |
container_volume | 23 |
creator | Beers, Brian L. Pine, Vernon W. |
description | A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carlo sample are used to calculate the expansion coefficients; the resulting coefficients are used to evaluate a (continuous) representation of the relevant distribution. In this paper we discuss this orthogonal function expansion method at some length. A precise mathematical formulation is given to two types of expansions: expansions of the probability density of a random variable; expansions of functions defined on a stochastic process. The method as formulated is then used for several problems of practical interest. The POEM Monte Carlo electron transport code has been modified to provide expansions for the following: one- and two-dimensional x-ray photoemission angular distributions; dose enhancement profiles near high-Z/low-Z interfaces, and energy distributions for finite beams incident on an interface. A discussion is given of the applicability of the method, particularly as it relates to the specific applications. Several pathological examples are cited which indicate the discretion necessary in applying the technique. These examples serve to counterpoint the desirable properties of convergence, smoothing, and variance reduction which arise from a properly applied expansion. |
doi_str_mv | 10.1109/TNS.1976.4328589 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_1976_4328589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4328589</ieee_id><sourcerecordid>10_1109_TNS_1976_4328589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-15d9e43e75ed6bbc649b7db2612005945fe76fbeb45fa0bd1d4acf8146f23de3</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMoWFfvgpf8ga5Jm7TNUUpXhXU92HtI0glWalOTFvTfm7Krp3nDe28YPoRuKdlSSsR9e3jbUlEWW5ZnFa_EGUoo51VKeVmdo4QQWqWCCXGJrkL4iCvjhCfosFtGM_duVANuvic1hqhxC-Z97L8WwNZ5_OLGGXCt_OBwM4CZ_RrxMTs5P0djMMug1iPhGl1YNQS4Oc0NandNWz-l-9fH5_phn5qsoHN8qhPAcig5dIXWpmBCl52OXkYIF4xbKAurQUeliO5ox5SxFWWFzfIO8g0ix7PGuxA8WDn5_lP5H0mJXHHIiEOuOOQJR6zcHSs9APzH_9xfHUhdwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Functional Expansion Technique for Monte Carlo Electron Transport Calculations</title><source>IEEE Xplore (Online service)</source><creator>Beers, Brian L. ; Pine, Vernon W.</creator><creatorcontrib>Beers, Brian L. ; Pine, Vernon W.</creatorcontrib><description>A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carlo sample are used to calculate the expansion coefficients; the resulting coefficients are used to evaluate a (continuous) representation of the relevant distribution. In this paper we discuss this orthogonal function expansion method at some length. A precise mathematical formulation is given to two types of expansions: expansions of the probability density of a random variable; expansions of functions defined on a stochastic process. The method as formulated is then used for several problems of practical interest. The POEM Monte Carlo electron transport code has been modified to provide expansions for the following: one- and two-dimensional x-ray photoemission angular distributions; dose enhancement profiles near high-Z/low-Z interfaces, and energy distributions for finite beams incident on an interface. A discussion is given of the applicability of the method, particularly as it relates to the specific applications. Several pathological examples are cited which indicate the discretion necessary in applying the technique. These examples serve to counterpoint the desirable properties of convergence, smoothing, and variance reduction which arise from a properly applied expansion.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.1976.4328589</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Electron beams ; Hilbert space ; Monte Carlo methods ; Pathology ; Photoelectricity ; Physics ; Random variables ; Smoothing methods ; Stochastic processes</subject><ispartof>IEEE transactions on nuclear science, 1976-01, Vol.23 (6), p.1850-1856</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-15d9e43e75ed6bbc649b7db2612005945fe76fbeb45fa0bd1d4acf8146f23de3</citedby><cites>FETCH-LOGICAL-c261t-15d9e43e75ed6bbc649b7db2612005945fe76fbeb45fa0bd1d4acf8146f23de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4328589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4328589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beers, Brian L.</creatorcontrib><creatorcontrib>Pine, Vernon W.</creatorcontrib><title>Functional Expansion Technique for Monte Carlo Electron Transport Calculations</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carlo sample are used to calculate the expansion coefficients; the resulting coefficients are used to evaluate a (continuous) representation of the relevant distribution. In this paper we discuss this orthogonal function expansion method at some length. A precise mathematical formulation is given to two types of expansions: expansions of the probability density of a random variable; expansions of functions defined on a stochastic process. The method as formulated is then used for several problems of practical interest. The POEM Monte Carlo electron transport code has been modified to provide expansions for the following: one- and two-dimensional x-ray photoemission angular distributions; dose enhancement profiles near high-Z/low-Z interfaces, and energy distributions for finite beams incident on an interface. A discussion is given of the applicability of the method, particularly as it relates to the specific applications. Several pathological examples are cited which indicate the discretion necessary in applying the technique. These examples serve to counterpoint the desirable properties of convergence, smoothing, and variance reduction which arise from a properly applied expansion.</description><subject>Convergence</subject><subject>Electron beams</subject><subject>Hilbert space</subject><subject>Monte Carlo methods</subject><subject>Pathology</subject><subject>Photoelectricity</subject><subject>Physics</subject><subject>Random variables</subject><subject>Smoothing methods</subject><subject>Stochastic processes</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhYMoWFfvgpf8ga5Jm7TNUUpXhXU92HtI0glWalOTFvTfm7Krp3nDe28YPoRuKdlSSsR9e3jbUlEWW5ZnFa_EGUoo51VKeVmdo4QQWqWCCXGJrkL4iCvjhCfosFtGM_duVANuvic1hqhxC-Z97L8WwNZ5_OLGGXCt_OBwM4CZ_RrxMTs5P0djMMug1iPhGl1YNQS4Oc0NandNWz-l-9fH5_phn5qsoHN8qhPAcig5dIXWpmBCl52OXkYIF4xbKAurQUeliO5ox5SxFWWFzfIO8g0ix7PGuxA8WDn5_lP5H0mJXHHIiEOuOOQJR6zcHSs9APzH_9xfHUhdwQ</recordid><startdate>19760101</startdate><enddate>19760101</enddate><creator>Beers, Brian L.</creator><creator>Pine, Vernon W.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19760101</creationdate><title>Functional Expansion Technique for Monte Carlo Electron Transport Calculations</title><author>Beers, Brian L. ; Pine, Vernon W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-15d9e43e75ed6bbc649b7db2612005945fe76fbeb45fa0bd1d4acf8146f23de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Convergence</topic><topic>Electron beams</topic><topic>Hilbert space</topic><topic>Monte Carlo methods</topic><topic>Pathology</topic><topic>Photoelectricity</topic><topic>Physics</topic><topic>Random variables</topic><topic>Smoothing methods</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beers, Brian L.</creatorcontrib><creatorcontrib>Pine, Vernon W.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beers, Brian L.</au><au>Pine, Vernon W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Expansion Technique for Monte Carlo Electron Transport Calculations</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1976-01-01</date><risdate>1976</risdate><volume>23</volume><issue>6</issue><spage>1850</spage><epage>1856</epage><pages>1850-1856</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carlo sample are used to calculate the expansion coefficients; the resulting coefficients are used to evaluate a (continuous) representation of the relevant distribution. In this paper we discuss this orthogonal function expansion method at some length. A precise mathematical formulation is given to two types of expansions: expansions of the probability density of a random variable; expansions of functions defined on a stochastic process. The method as formulated is then used for several problems of practical interest. The POEM Monte Carlo electron transport code has been modified to provide expansions for the following: one- and two-dimensional x-ray photoemission angular distributions; dose enhancement profiles near high-Z/low-Z interfaces, and energy distributions for finite beams incident on an interface. A discussion is given of the applicability of the method, particularly as it relates to the specific applications. Several pathological examples are cited which indicate the discretion necessary in applying the technique. These examples serve to counterpoint the desirable properties of convergence, smoothing, and variance reduction which arise from a properly applied expansion.</abstract><pub>IEEE</pub><doi>10.1109/TNS.1976.4328589</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 1976-01, Vol.23 (6), p.1850-1856 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNS_1976_4328589 |
source | IEEE Xplore (Online service) |
subjects | Convergence Electron beams Hilbert space Monte Carlo methods Pathology Photoelectricity Physics Random variables Smoothing methods Stochastic processes |
title | Functional Expansion Technique for Monte Carlo Electron Transport Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Expansion%20Technique%20for%20Monte%20Carlo%20Electron%20Transport%20Calculations&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Beers,%20Brian%20L.&rft.date=1976-01-01&rft.volume=23&rft.issue=6&rft.spage=1850&rft.epage=1856&rft.pages=1850-1856&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.1976.4328589&rft_dat=%3Ccrossref_RIE%3E10_1109_TNS_1976_4328589%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4328589&rfr_iscdi=true |