Functional Expansion Technique for Monte Carlo Electron Transport Calculations

A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 1976-01, Vol.23 (6), p.1850-1856
Hauptverfasser: Beers, Brian L., Pine, Vernon W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1856
container_issue 6
container_start_page 1850
container_title IEEE transactions on nuclear science
container_volume 23
creator Beers, Brian L.
Pine, Vernon W.
description A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carlo sample are used to calculate the expansion coefficients; the resulting coefficients are used to evaluate a (continuous) representation of the relevant distribution. In this paper we discuss this orthogonal function expansion method at some length. A precise mathematical formulation is given to two types of expansions: expansions of the probability density of a random variable; expansions of functions defined on a stochastic process. The method as formulated is then used for several problems of practical interest. The POEM Monte Carlo electron transport code has been modified to provide expansions for the following: one- and two-dimensional x-ray photoemission angular distributions; dose enhancement profiles near high-Z/low-Z interfaces, and energy distributions for finite beams incident on an interface. A discussion is given of the applicability of the method, particularly as it relates to the specific applications. Several pathological examples are cited which indicate the discretion necessary in applying the technique. These examples serve to counterpoint the desirable properties of convergence, smoothing, and variance reduction which arise from a properly applied expansion.
doi_str_mv 10.1109/TNS.1976.4328589
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNS_1976_4328589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4328589</ieee_id><sourcerecordid>10_1109_TNS_1976_4328589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-15d9e43e75ed6bbc649b7db2612005945fe76fbeb45fa0bd1d4acf8146f23de3</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMoWFfvgpf8ga5Jm7TNUUpXhXU92HtI0glWalOTFvTfm7Krp3nDe28YPoRuKdlSSsR9e3jbUlEWW5ZnFa_EGUoo51VKeVmdo4QQWqWCCXGJrkL4iCvjhCfosFtGM_duVANuvic1hqhxC-Z97L8WwNZ5_OLGGXCt_OBwM4CZ_RrxMTs5P0djMMug1iPhGl1YNQS4Oc0NandNWz-l-9fH5_phn5qsoHN8qhPAcig5dIXWpmBCl52OXkYIF4xbKAurQUeliO5ox5SxFWWFzfIO8g0ix7PGuxA8WDn5_lP5H0mJXHHIiEOuOOQJR6zcHSs9APzH_9xfHUhdwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Functional Expansion Technique for Monte Carlo Electron Transport Calculations</title><source>IEEE Xplore (Online service)</source><creator>Beers, Brian L. ; Pine, Vernon W.</creator><creatorcontrib>Beers, Brian L. ; Pine, Vernon W.</creatorcontrib><description>A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carlo sample are used to calculate the expansion coefficients; the resulting coefficients are used to evaluate a (continuous) representation of the relevant distribution. In this paper we discuss this orthogonal function expansion method at some length. A precise mathematical formulation is given to two types of expansions: expansions of the probability density of a random variable; expansions of functions defined on a stochastic process. The method as formulated is then used for several problems of practical interest. The POEM Monte Carlo electron transport code has been modified to provide expansions for the following: one- and two-dimensional x-ray photoemission angular distributions; dose enhancement profiles near high-Z/low-Z interfaces, and energy distributions for finite beams incident on an interface. A discussion is given of the applicability of the method, particularly as it relates to the specific applications. Several pathological examples are cited which indicate the discretion necessary in applying the technique. These examples serve to counterpoint the desirable properties of convergence, smoothing, and variance reduction which arise from a properly applied expansion.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.1976.4328589</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Electron beams ; Hilbert space ; Monte Carlo methods ; Pathology ; Photoelectricity ; Physics ; Random variables ; Smoothing methods ; Stochastic processes</subject><ispartof>IEEE transactions on nuclear science, 1976-01, Vol.23 (6), p.1850-1856</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-15d9e43e75ed6bbc649b7db2612005945fe76fbeb45fa0bd1d4acf8146f23de3</citedby><cites>FETCH-LOGICAL-c261t-15d9e43e75ed6bbc649b7db2612005945fe76fbeb45fa0bd1d4acf8146f23de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4328589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4328589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beers, Brian L.</creatorcontrib><creatorcontrib>Pine, Vernon W.</creatorcontrib><title>Functional Expansion Technique for Monte Carlo Electron Transport Calculations</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carlo sample are used to calculate the expansion coefficients; the resulting coefficients are used to evaluate a (continuous) representation of the relevant distribution. In this paper we discuss this orthogonal function expansion method at some length. A precise mathematical formulation is given to two types of expansions: expansions of the probability density of a random variable; expansions of functions defined on a stochastic process. The method as formulated is then used for several problems of practical interest. The POEM Monte Carlo electron transport code has been modified to provide expansions for the following: one- and two-dimensional x-ray photoemission angular distributions; dose enhancement profiles near high-Z/low-Z interfaces, and energy distributions for finite beams incident on an interface. A discussion is given of the applicability of the method, particularly as it relates to the specific applications. Several pathological examples are cited which indicate the discretion necessary in applying the technique. These examples serve to counterpoint the desirable properties of convergence, smoothing, and variance reduction which arise from a properly applied expansion.</description><subject>Convergence</subject><subject>Electron beams</subject><subject>Hilbert space</subject><subject>Monte Carlo methods</subject><subject>Pathology</subject><subject>Photoelectricity</subject><subject>Physics</subject><subject>Random variables</subject><subject>Smoothing methods</subject><subject>Stochastic processes</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhYMoWFfvgpf8ga5Jm7TNUUpXhXU92HtI0glWalOTFvTfm7Krp3nDe28YPoRuKdlSSsR9e3jbUlEWW5ZnFa_EGUoo51VKeVmdo4QQWqWCCXGJrkL4iCvjhCfosFtGM_duVANuvic1hqhxC-Z97L8WwNZ5_OLGGXCt_OBwM4CZ_RrxMTs5P0djMMug1iPhGl1YNQS4Oc0NandNWz-l-9fH5_phn5qsoHN8qhPAcig5dIXWpmBCl52OXkYIF4xbKAurQUeliO5ox5SxFWWFzfIO8g0ix7PGuxA8WDn5_lP5H0mJXHHIiEOuOOQJR6zcHSs9APzH_9xfHUhdwQ</recordid><startdate>19760101</startdate><enddate>19760101</enddate><creator>Beers, Brian L.</creator><creator>Pine, Vernon W.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19760101</creationdate><title>Functional Expansion Technique for Monte Carlo Electron Transport Calculations</title><author>Beers, Brian L. ; Pine, Vernon W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-15d9e43e75ed6bbc649b7db2612005945fe76fbeb45fa0bd1d4acf8146f23de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Convergence</topic><topic>Electron beams</topic><topic>Hilbert space</topic><topic>Monte Carlo methods</topic><topic>Pathology</topic><topic>Photoelectricity</topic><topic>Physics</topic><topic>Random variables</topic><topic>Smoothing methods</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beers, Brian L.</creatorcontrib><creatorcontrib>Pine, Vernon W.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beers, Brian L.</au><au>Pine, Vernon W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Expansion Technique for Monte Carlo Electron Transport Calculations</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1976-01-01</date><risdate>1976</risdate><volume>23</volume><issue>6</issue><spage>1850</spage><epage>1856</epage><pages>1850-1856</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A new method for Monte Carlo electron transport calculations has previously been outlined. Briefly, the method is as follows: the quantity of interest (e.g., x-ray photoemission angular distribution) is expanded in a complete set of orthogonal functions; the individual trajectories of the Monte Carlo sample are used to calculate the expansion coefficients; the resulting coefficients are used to evaluate a (continuous) representation of the relevant distribution. In this paper we discuss this orthogonal function expansion method at some length. A precise mathematical formulation is given to two types of expansions: expansions of the probability density of a random variable; expansions of functions defined on a stochastic process. The method as formulated is then used for several problems of practical interest. The POEM Monte Carlo electron transport code has been modified to provide expansions for the following: one- and two-dimensional x-ray photoemission angular distributions; dose enhancement profiles near high-Z/low-Z interfaces, and energy distributions for finite beams incident on an interface. A discussion is given of the applicability of the method, particularly as it relates to the specific applications. Several pathological examples are cited which indicate the discretion necessary in applying the technique. These examples serve to counterpoint the desirable properties of convergence, smoothing, and variance reduction which arise from a properly applied expansion.</abstract><pub>IEEE</pub><doi>10.1109/TNS.1976.4328589</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 1976-01, Vol.23 (6), p.1850-1856
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_TNS_1976_4328589
source IEEE Xplore (Online service)
subjects Convergence
Electron beams
Hilbert space
Monte Carlo methods
Pathology
Photoelectricity
Physics
Random variables
Smoothing methods
Stochastic processes
title Functional Expansion Technique for Monte Carlo Electron Transport Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Expansion%20Technique%20for%20Monte%20Carlo%20Electron%20Transport%20Calculations&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Beers,%20Brian%20L.&rft.date=1976-01-01&rft.volume=23&rft.issue=6&rft.spage=1850&rft.epage=1856&rft.pages=1850-1856&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.1976.4328589&rft_dat=%3Ccrossref_RIE%3E10_1109_TNS_1976_4328589%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4328589&rfr_iscdi=true