Hierarchical Contrastive Representation for Accurate Evaluation of Rehabilitation Exercises via Multi-view Skeletal Representations
Rehabilitation training is essential for the recovery of patients with conditions such as stroke and Parkinson's disease. However, traditional skeletal-based assessments often fail to capture the subtle movement qualities necessary for personalized care and are not optimized for scoring tasks....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2025-01, Vol.33, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 33 |
creator | Kuang, Zhejun Wang, Jingrui Sun, Dawen Zhao, Jian Shi, Lijuan Zhu, Yusheng |
description | Rehabilitation training is essential for the recovery of patients with conditions such as stroke and Parkinson's disease. However, traditional skeletal-based assessments often fail to capture the subtle movement qualities necessary for personalized care and are not optimized for scoring tasks. To address these limitations, we propose a hierarchical contrastive learning framework that integrates multi-view skeletal data, combining both positional and angular joint information. This integration enhances the framework's ability to detect subtle variations in movement during rehabilitation exercises. In addition, we introduce a novel contrastive loss function specifically designed for regression tasks. This new approach yields substantial improvements over existing state-of-the-art models, achieving over a 30% reduction in mean absolute deviation on both the KIMORE and UIPRMD datasets. The framework demonstrates robustness in capturing both global and local movement characteristics, which are critical for accurate clinical evaluations. By precisely quantifying action quality, the framework supports the development of more targeted, personalized rehabilitation plans and shows strong potential for broad application in rehabilitation practices as well as in a wider range of motion assessment tasks. |
doi_str_mv | 10.1109/TNSRE.2024.3523906 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSRE_2024_3523906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10818452</ieee_id><doaj_id>oai_doaj_org_article_86e143f7254d4ce59232592cf5e88b31</doaj_id><sourcerecordid>oai_doaj_org_article_86e143f7254d4ce59232592cf5e88b31</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1746-6809fcd2b4be3c3634f4c8d1f5998fe483f57c6fc435a0a1c48a7b6d70efda083</originalsourceid><addsrcrecordid>eNpVkU9PwkAQxRujiYh-AeOhX6C4f9vtkRAUEtQE8LyZbmdlsVKzW1DPfnELJUYvM5OX935zeFF0TcmAUpLfLh8X8_GAESYGXDKek_Qk6lEpVUIYJaf7m4tEcEbOo4sQ1oTQLJVZL_qeOPTgzcoZqOJRvWk8hMbtMJ7ju8eAmwYaV29iW_t4aMzWQ4PxeAfVttNr2zpXULjKHZ3jT_TGBQzxzkH8sK0al-wcfsSLV6ywad_8R4fL6MxCFfDquPvR8914OZoks6f76Wg4SwzNRJqkiuTWlKwQBXLDUy6sMKqkVua5sigUtzIzqTWCSyBAjVCQFWmZEbQlEMX70bTjljWs9bt3b-C_dA1OH4Tav2jwjTMVapUiFdxmTIpSGJQ546wdxkpUquC0ZbGOZXwdgkf7y6NE7yvRh0r0vhJ9rKQN3XQhh4h_Aooq0Vp-AN65i5A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchical Contrastive Representation for Accurate Evaluation of Rehabilitation Exercises via Multi-view Skeletal Representations</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kuang, Zhejun ; Wang, Jingrui ; Sun, Dawen ; Zhao, Jian ; Shi, Lijuan ; Zhu, Yusheng</creator><creatorcontrib>Kuang, Zhejun ; Wang, Jingrui ; Sun, Dawen ; Zhao, Jian ; Shi, Lijuan ; Zhu, Yusheng</creatorcontrib><description>Rehabilitation training is essential for the recovery of patients with conditions such as stroke and Parkinson's disease. However, traditional skeletal-based assessments often fail to capture the subtle movement qualities necessary for personalized care and are not optimized for scoring tasks. To address these limitations, we propose a hierarchical contrastive learning framework that integrates multi-view skeletal data, combining both positional and angular joint information. This integration enhances the framework's ability to detect subtle variations in movement during rehabilitation exercises. In addition, we introduce a novel contrastive loss function specifically designed for regression tasks. This new approach yields substantial improvements over existing state-of-the-art models, achieving over a 30% reduction in mean absolute deviation on both the KIMORE and UIPRMD datasets. The framework demonstrates robustness in capturing both global and local movement characteristics, which are critical for accurate clinical evaluations. By precisely quantifying action quality, the framework supports the development of more targeted, personalized rehabilitation plans and shows strong potential for broad application in rehabilitation practices as well as in a wider range of motion assessment tasks.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3523906</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Action Quality Assessment ; Analytical models ; Computational modeling ; Contrastive learning ; Data models ; Physical Rehabilitation ; Quality assessment ; Representation Learning ; Sun ; Training ; Vectors</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2025-01, Vol.33, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1746-6809fcd2b4be3c3634f4c8d1f5998fe483f57c6fc435a0a1c48a7b6d70efda083</cites><orcidid>0000-0001-5632-7596 ; 0009-0006-2641-2099 ; 0000-0003-3265-6461 ; 0009-0008-6309-2711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,27923,27924</link.rule.ids></links><search><creatorcontrib>Kuang, Zhejun</creatorcontrib><creatorcontrib>Wang, Jingrui</creatorcontrib><creatorcontrib>Sun, Dawen</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Shi, Lijuan</creatorcontrib><creatorcontrib>Zhu, Yusheng</creatorcontrib><title>Hierarchical Contrastive Representation for Accurate Evaluation of Rehabilitation Exercises via Multi-view Skeletal Representations</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description>Rehabilitation training is essential for the recovery of patients with conditions such as stroke and Parkinson's disease. However, traditional skeletal-based assessments often fail to capture the subtle movement qualities necessary for personalized care and are not optimized for scoring tasks. To address these limitations, we propose a hierarchical contrastive learning framework that integrates multi-view skeletal data, combining both positional and angular joint information. This integration enhances the framework's ability to detect subtle variations in movement during rehabilitation exercises. In addition, we introduce a novel contrastive loss function specifically designed for regression tasks. This new approach yields substantial improvements over existing state-of-the-art models, achieving over a 30% reduction in mean absolute deviation on both the KIMORE and UIPRMD datasets. The framework demonstrates robustness in capturing both global and local movement characteristics, which are critical for accurate clinical evaluations. By precisely quantifying action quality, the framework supports the development of more targeted, personalized rehabilitation plans and shows strong potential for broad application in rehabilitation practices as well as in a wider range of motion assessment tasks.</description><subject>Accuracy</subject><subject>Action Quality Assessment</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Contrastive learning</subject><subject>Data models</subject><subject>Physical Rehabilitation</subject><subject>Quality assessment</subject><subject>Representation Learning</subject><subject>Sun</subject><subject>Training</subject><subject>Vectors</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU9PwkAQxRujiYh-AeOhX6C4f9vtkRAUEtQE8LyZbmdlsVKzW1DPfnELJUYvM5OX935zeFF0TcmAUpLfLh8X8_GAESYGXDKek_Qk6lEpVUIYJaf7m4tEcEbOo4sQ1oTQLJVZL_qeOPTgzcoZqOJRvWk8hMbtMJ7ju8eAmwYaV29iW_t4aMzWQ4PxeAfVttNr2zpXULjKHZ3jT_TGBQzxzkH8sK0al-wcfsSLV6ywad_8R4fL6MxCFfDquPvR8914OZoks6f76Wg4SwzNRJqkiuTWlKwQBXLDUy6sMKqkVua5sigUtzIzqTWCSyBAjVCQFWmZEbQlEMX70bTjljWs9bt3b-C_dA1OH4Tav2jwjTMVapUiFdxmTIpSGJQ546wdxkpUquC0ZbGOZXwdgkf7y6NE7yvRh0r0vhJ9rKQN3XQhh4h_Aooq0Vp-AN65i5A</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Kuang, Zhejun</creator><creator>Wang, Jingrui</creator><creator>Sun, Dawen</creator><creator>Zhao, Jian</creator><creator>Shi, Lijuan</creator><creator>Zhu, Yusheng</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5632-7596</orcidid><orcidid>https://orcid.org/0009-0006-2641-2099</orcidid><orcidid>https://orcid.org/0000-0003-3265-6461</orcidid><orcidid>https://orcid.org/0009-0008-6309-2711</orcidid></search><sort><creationdate>20250101</creationdate><title>Hierarchical Contrastive Representation for Accurate Evaluation of Rehabilitation Exercises via Multi-view Skeletal Representations</title><author>Kuang, Zhejun ; Wang, Jingrui ; Sun, Dawen ; Zhao, Jian ; Shi, Lijuan ; Zhu, Yusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1746-6809fcd2b4be3c3634f4c8d1f5998fe483f57c6fc435a0a1c48a7b6d70efda083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Action Quality Assessment</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Contrastive learning</topic><topic>Data models</topic><topic>Physical Rehabilitation</topic><topic>Quality assessment</topic><topic>Representation Learning</topic><topic>Sun</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Zhejun</creatorcontrib><creatorcontrib>Wang, Jingrui</creatorcontrib><creatorcontrib>Sun, Dawen</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Shi, Lijuan</creatorcontrib><creatorcontrib>Zhu, Yusheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, Zhejun</au><au>Wang, Jingrui</au><au>Sun, Dawen</au><au>Zhao, Jian</au><au>Shi, Lijuan</au><au>Zhu, Yusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Contrastive Representation for Accurate Evaluation of Rehabilitation Exercises via Multi-view Skeletal Representations</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>33</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Rehabilitation training is essential for the recovery of patients with conditions such as stroke and Parkinson's disease. However, traditional skeletal-based assessments often fail to capture the subtle movement qualities necessary for personalized care and are not optimized for scoring tasks. To address these limitations, we propose a hierarchical contrastive learning framework that integrates multi-view skeletal data, combining both positional and angular joint information. This integration enhances the framework's ability to detect subtle variations in movement during rehabilitation exercises. In addition, we introduce a novel contrastive loss function specifically designed for regression tasks. This new approach yields substantial improvements over existing state-of-the-art models, achieving over a 30% reduction in mean absolute deviation on both the KIMORE and UIPRMD datasets. The framework demonstrates robustness in capturing both global and local movement characteristics, which are critical for accurate clinical evaluations. By precisely quantifying action quality, the framework supports the development of more targeted, personalized rehabilitation plans and shows strong potential for broad application in rehabilitation practices as well as in a wider range of motion assessment tasks.</abstract><pub>IEEE</pub><doi>10.1109/TNSRE.2024.3523906</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5632-7596</orcidid><orcidid>https://orcid.org/0009-0006-2641-2099</orcidid><orcidid>https://orcid.org/0000-0003-3265-6461</orcidid><orcidid>https://orcid.org/0009-0008-6309-2711</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2025-01, Vol.33, p.1-1 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSRE_2024_3523906 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Action Quality Assessment Analytical models Computational modeling Contrastive learning Data models Physical Rehabilitation Quality assessment Representation Learning Sun Training Vectors |
title | Hierarchical Contrastive Representation for Accurate Evaluation of Rehabilitation Exercises via Multi-view Skeletal Representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Contrastive%20Representation%20for%20Accurate%20Evaluation%20of%20Rehabilitation%20Exercises%20via%20Multi-view%20Skeletal%20Representations&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Kuang,%20Zhejun&rft.date=2025-01-01&rft.volume=33&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3523906&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_86e143f7254d4ce59232592cf5e88b31%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10818452&rft_doaj_id=oai_doaj_org_article_86e143f7254d4ce59232592cf5e88b31&rfr_iscdi=true |